SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY

SOUTH. BRAZ. J. CHEM., Vol.4 Nº4, 1996.

THE ELECTRICAL BEHAVIOUR OF THE M_xHgI₄ INORGANIC COMBINATION AND SOME STRUCTURAL ALTERATIONS VERSUS THE PRESSURE

Tudor ROSU*, Lidia PARUTA** and Anca EMANDI*

45

* Faculty of Chemistry, Bucharest University, 70609 Bucharest, Romania

**Institute of Physical Chemistry of Romanian Academy, Splaiul Independentei 202, 77208 Bucharest, Romania

ABSTRACT

In this paper the structural changes of the M_xHgI_4 - type combinations (M = Ag⁺, Cu⁺, Tl⁺, Pb²⁺, Cd²⁺ and x = 1,2) which occur due to pressure (5 - 30 MPa) applied on the powder of these complexes are presented.

These alterations were confirmed by the X - ray diffraction spectra and by electrical conductibility measurements.

RESUMO

Este trabalho trata de mudanças estruturais que acontecem quando po de complexos do tipo M_XHgI_4 onde (M = Ag⁺, Cu⁺, Tl⁺, Pb²⁺, Cd²⁺ e x = 1,2) esta sujeito a pressões de 5 a 30 MPa. Estas alterações estruturais foram confirmadas por espectra de difração de raios-X e medidas de condutibilidade elétrica.

KEYWORDS : tetraiodomercurates, electrical conductibility, X-ray diffraction, structural alterations.

Structural Alterations of M_xHgI₄

INTRODUCTION

The structure of the α and β crystalline phases of the Ag₂HgI₄ and Cu₂HgI₄ compounds has been known from the papers initiated by Ketelaar in 1931 - 1938¹⁻⁵ and studies continued in the fifties and sixties by Frevel⁶, Suchov⁷, Hahn⁸, Otsuba et al.⁹

Some relationships between the structure and the electrical conductibility, versus either the temperature or the pressure or both of them simultaneously, within the inorganic M_xHgI_4 (where $M = Ag^+$, Cu^+)^{10,11} combinations class were established in the period of 1964 - 1974.

Between 1974 and 1975, Kasper and Browall^{12,13} determined the structure of the Ag₂HgI₄ monocrystals both for the low temperature crystalline phase - β (ordered) and for the high temperature crystalline phase - α (disordered).

Olson and Harris¹⁴ also performed these determinations on polycrystalline species. In 1982, the relationship structure - electrical conductibility versus the temperature and pressure for the inorganic Tl_2ZnI_4 combination was studied using Raman Spectra, by McOmber - et al¹⁵.

Another paper, elaborated by Brightwell and Buckley in 1984¹⁶, presents the equilibrium phase diagram for the AgI-CdI₂ system compared to the Ag₂HgI₄ and Ag₂ZnI₄ compounds.

In this paper the structural modifications of the M_xHgI_4 inorganic combinations versus the nature of the metallic M^{n+} ion, were studied using the X - ray diffraction and electrical conductibility measurements. The paper also established the structural lattice changes of the respective compounds and the effects on the electrical conductibility, when the microcrystalline powders are exposed to some certain pressure (5-30 MPa) for definite periods.

EXPERIMENTAL PART

An X-ray diffraction type TUR-M-62 apparatus equipped with a HZG-3 diffractometer operating with CuK_{α} radiation was used. The X-ray excitation was performed at 30 kV and 30 mA. The moving rate of the counter arm of the diffractometer was 0.5° Bragg/min; range was 1.5-25° Bragg. The intensity scale expressed in qpm (quants/min) was selected so that the most intense diffraction line was totally included into the diffractogramme. The measuring of the diffraction lines precision was $\pm 0.005^{\circ}$ Bragg.

The electrical conductibility measurements were performed through the "four wells" method¹⁷ using a "Coucusai" French type apparatus. The wells used in performing the determination are made of wolfram and they are fixed using some sapphire bearings. The bearings are positioned collinearly, the distance between them being 1mm.

After being obtained through wet synthesis, the M_xHgI_4 compound were filtered, washed with alcohol and then dried with P_2O_5 . The microcrystalline powders were used for further determinations, as follows:

46

- in order to perform the diffractometric study, microcrystalline powders samples and pellets (cylindrical samples), were obtained from the powder, using a DP-36 (D.R.G.) press. at the following values: 1; 5; 10; 15; 20 and 30 MPa;

- in order to study the electrical conductibility, σ , pellets obtained at the above partial pressures were used for all the five M_xHgI_4 compounds studied. X-ray diffraction data and electrical conductibilities were obtained at room temperature.

RESULTS AND DISCUSSION

The results obtained through the determination of the electrical conductibility, σ , for all the M_xHgI₄ compounds studied.

The Figures 1a - 2a present the electrical conductibility, σ , versus the pressure, P. It can be observed that the electrical conductibility for the Ag₂HgI₄, Cu₂HgI₄ compounds exhibits maxima at a 15 MPa and 20 MPa, respectively. These maxima are in accordance with the determinations performed by R. Well and coworkers¹⁰ for Ag₂HgI₄, by S. Shibata et al.¹¹ for Cu₂HgI₄ and by McOmber et al.¹⁵ for both of these compounds. Moreover, a second maximum of the electrical conductibility was found for the Ag₂HgI₄ compound, at 25 MPa. The Tl₂HgI₄ and PbHgI₄ compounds exhibit a decrease of electrical conductibility with increasing pressure (Fig. 3a and 4a), and the Cu₂HgI₄ compound exhibits maximum values of the electrical conductibility at 30 MPa (Fig. 5a).

The diffraction spectra performed on the M_xHgI_4 compounds do not confirm this supposition. Thus, the diffractogrammes obtained on the respective samples (Tables 1-5), at different pressure, did not lead to the conclusion of a phase transformations, with a change of the diffraction spectrum.

All these determinations are in accordance with the observations made by the Omber and coworkers¹⁵ and Greig and collaborators¹⁹. They didn't observe any changes in the Raman spectra of the Ag₂HgI₄, Cu₂HgI₄ compounds as a function of pressure in the range of the pressure values mentioned above. This confirmed that a new crystalline phase didn't appear. d_ohkl values sets resulted from the diffractogrammes obtained on the powders and d_phkl values sets were obtained from the diffractogrammes on the same compounds pressed under different pressures. The experimental values |Adhkl| = d_phkl - d_ohkl (axial parameter referring to the distance between two atomic planes) were calculated using these values sets and graphic represented versus the pressing pressure (Fig. 1b-5b). Figures 1a,b-5a,b.

These Figures are different for different compounds, but are similar for the same compounds and can be compared to the 1a-5a Figures. Therefore, it can be assumed that the electrical conductibility alteration is determined by some order - disorder phenomena, in relation with the reticulate crystalline planes. (i.e. the number of atoms and holes, within the respective planes, without an alteration of the respective cell unit)

The diffraction spectra of the samples at different pressure are presented in Tables 1-5. It can be appreciated that some alterations of the crystalline lattice appear with the increasing pressure, meaning the appearance or the disappeareance of same spaces, towards which the metallic ions can move or not, determining an increase or a decrease of the total conductibility. The qualitative assumptions regarding to the Structural Alterations of M_xHgI_4

Fig. 1a-The electrical conductibility versus pressure for the Ag_2HgI_4 compound.

Fig. 1b-The $|\Delta d(A)|$ parameter versus pressure for the Ag₂HgI₄ compound.

Fig.2a-The electrical conductibility versus pressure for the Cu_2HgI_4 compound.

Fig.2b-The $|\Delta d(A)|$ parameter versus pressure for the Cu₂HgI₄ compound.

SOUTH. BRAZ. J. CHEM., Vol.4 Nº4, 1996.

Structural Alterations of MonHaI4

Fig.3a-The electrical conductibility versus pressure for the Tl_2HgI_4 compound.

50

Fig.4a-The electrical conductibility versus pressure for the PbHgI4 compound.

Structural Alterations of $M_{\rm X}HgI_4$

Fig.5a-The electrical conductibility versus pressure for the CdHgI4 compound.

Fig.5b-The $|\Delta d(A)|$ parameter versus pressure for the CdHgI₄ compound.

			>		Р,	MPa	****					
	0		\$		10	15		20		25		
d, A	- 1/1	<i>11</i> , 1	$d_{\mu\nu}$ A	μ,	d_p, λ	lit,	d_p, λ	111_	d_{pr} A	<i>יו</i> י,	d _p A	1/1,
6,2668	14	002	6,3000	12	6,2757	14	6,2492	14	6.2405 5.9644	16 14	6,2580	13
5.6253	19	101	5,6467	13	5,6182	25	5,6041	19	5.6467 4.5253	22 16	5,6041	16
4,4622	16	110	4,4711	15	4.4533	19	4,4533	19	4,4622	16	4,4313	15
3,6390	100	112	3.6419	100	3,6390	100	3,6302	100	3.6419	100	3,6186	100
3,4981	16	103	3.4954	12	3,4954	17	3.4847	18	3,5036	19	3.4740	- 14
2,8184	16	202	2,8236	13	2.8219	19	2,8167	24	2,8289	19	2,8115	14
2,7525	15	211	2,7542	13	2,7608	19	2,7378	24	2,7592	18	2,7460	14
2.5728	14	212	2.5771		2,5743	17	2,5671	19	2,5786	16	2,5671	13
2,3433	14	213	2,3480		2,3374	17	2,3386	19	2,3456	15	2,3386	14
2,2317	49	220	2.2328	38	2,2338	54	2,2275	73	2,2349	50	2.2222	48
2,1040	16	222,	2,1007		2,1010	16	2,1000	17	2.1100	15	2,1000	14
		300										
1,9239	28	312	1,9079	16	1.9087	29	1,9004	38	1.9095	30	1,9012	34
J.9034	28	116	1,9004	16	1,9034	31	1,8952	38	1.9034	29	1.8959	34

 TABLE 1 - X-Ray diffraction data for powder - Ag2HgI4 compound and powder under pressure effect

5 3

	· .	•				•						
					Р,	MPa		,				
	0		5		10		15		20		25	
d., A	<i>111</i>	hkl	d _p , λ	<i>III</i> ,	dp, N	<i>m</i> ,	d _p , A	///,	d _p , Å	<i>"</i> ",	dps A	- 111,
5_4399 3_5172 3_3857 	14 100 14 16	101 112 103 200,	5,4800 3,5282 3,4035 3,2452 3,1728 3,1099 3,0659 3,0475	5 100 6 7 8 7 7 6	5,4399 3,5036 	22 100 	5,5003 3,5227 3,3907 	25 100 28 - - - -	5,5003 3,5309 3,3984 	24 J00 24 	5.4433 3.4700 3.3756 	, 100 31 - - -
2.7592	10	004 104, 202	2.8030	5		-	2,7708	25	-	_		.
2,6542 2,2618	12 10	211 105, 213	2,6588	_5	2,6420	28 -	2,6526	·25 —	2,6649 —	24 	2,6450 2,2275	30 30
2,1562	24	220,	2,1581	10	2,1532	40	2,1552	. 45	2,1611	39	2,1522	47
2,1454	20	204 115, 221			2,1493	35	2,1445	40	2,1450	35	2,1480	47
2,0651	8	224, 006	2.0777	8	2,0696	25	2,0768	25	. 2,0777	21	-	

TABLE 2 - X-Ray diffraction data for the powder - Cu2HgI4 compoundand powder under pressure effect

Structural Alterations of $M_{x}HgI_{4}$

					P,	MPu						
	0		5		10		15		20		25	
d _e , A	1/1,	hkl	<i>d_p</i> , A	#1,	d _p . A	<i>m</i> ,	d _p , A		d _p , A	<i> </i> ,	d _p , λ	1/1
6,5823 4,6091 4,1990 3,5643 3,3309 3,1120 2,9838 2,9227 2,7625 2,6110 2,4870 2,3563 2,3120 2,2727 2,2222 2,1920 2,1100	19 15 15 41 20 100 61 15 19 13 13 19 22 17 17 17 24 17	002 102 111 103 004 201 104 202 211 203 105 213 204 115 221 006 301	6.6810 4,6571 4,2466 3,5785 3,3581 3.1356 2,9994 2,9434 	18 12 20 12 36 100 107 16 - 15 15 18 18 18 18 22 - 25	6.5726 4.6187 4.2227 3,5699 3.3334 3.1184 2.9818 2.9302 	18 18 18 18 14 26 100 79 16 - 12 16 19 16 21 19 19 19	6,6019 4,6474 4,2267 3,5841 3,3432 3,1227 2,9955 2,9377 2,7661 	22 24 24 38 38 100 81 22 24 22 22 22 19 27 30 24	6,6019 6,6474 4,2227 3,5756 3,3309 3,1163 2,9818 2,9321 2,7658 2,6121 2,3587 2,3109 2,2716 2,2212 2,1902 2,1100	20 18 22 37 35 100 90 18 22 14 - 17 18 16 20 41 20	6,6019 4,6474 4,2227 3,5699 3,3309 3,1163 2,9838 2,9265 2,7625 	20 15 18 33 22 100 69 20 20 20 20

TABLE 3 - X-Ray diffraction data for the powder - Tl₂HgI₄ compound and powder under pressure effect

ა ა

				Ρ,	MPa						
0		5		10	15			20		25	
<i>]]]</i>	hkl	d _p , A	1/11	d_p , λ	111,	d _p . A	<i> 1</i>	d_p . A	<i>1 1</i> 1	d_p, λ	B_{χ}
100		7,0303*	001	7,0081*	100	6,9971*	100	7,0415*	100	7.0192*	100
10	002	6,6019	12	6.5824	13	6,6216	13	6.6414	14	6.6414	16
10	003	4,3078	12	4,2910	20	4,2954	13	4.3161	16	4,3078	16
8	112	4,0586	12	4,0476	20	4,0404	13	4.0623	14	4.0404	16
15	201	3,3482	19	3,3482	29	3.3408	18	3,3556	23	3.3432	25
13	044	3,2995	16	3,2971	25	3,3019	17	3,2971	20	3.2932	22
10	203	2,7120	13	2,7104	20	2,6992	11	2.7071	14	2.7104	17
8	005	2,6496	12	2,6405	20	2,6345	·13	2.6465	16	2.6420	17
7	221	2,5033	10	2,4979	16				·	·	.
9	311	2,1490	12	2,1434	14	2,1466	11	2.1434	11	2,1450	16
	0 100 100 100 100 100 100 8 15 13 100 8 7 9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 TABLE 4 - X-Ray diffraction data for the powder - PbHgI₄ compound and powder under pressure effect

*	The most intense spectral line belongs to the PbI, compound
	(JCPDS 7-235) and not to PbHgL compound

	P, MPa											
29 -	0		10		15		20		30			
d, A	<i>"</i> ,	hkl	d _p , k	///,	d _p , A	111,	d _p ,A	111,	d _p , A	- 1/1,		
6.2317	83	002	6,2143	188	6,2317	118	6,2230	124	6,1712	9		
4.1106	76	101	4,1257	54	4,1409	61	4,1219	64	4,1031	5		
3,5756	100	102	3.5756	100	3,5756	100	3,5784	100	3,5587	100		
3,1120	21	004	3,1120	11	3,1099	9	3,1099	11	3,0867	10		
3,0014	48	103	3,0113	56	3,0073	46	3,0093	49	2,9955	4		
• • • • •		111	•		-				-			
2,7625	41	112	2,7741	17	2,7641	13	2,7675	19	2,7558	1		
2.5265	24	104	2,5334	15	2,5320	9	2,5334	13	2,5224	1		
2,1902	55	114	2,1953	33	2,1922	21	2,1902	36	2,1871	2		
2,1871	29	200	2,1892	33	2,1861	25	2.1851	34	2.1780	3		
2,1581	28	105	2,1601	25	2,1591	22	2,1611	17	2,1571	1		
2,0695	31	202,	2,0741	35	2,0750	28	2,0741	29	2,0677	2		
		006	·									
1,9285	28	211	1,9324	12	1,9324	9	1,9309	10	1,9247	1		
		203					•	1		1		
1,8732	31	106	1,8717	12	1,8725	12	1,8753	14	1.8695	1		
1,8609	31	212	1,8660	12	1,8645	9	1,8631	11.	1.8568	1		

TABLE 5 - X-Ray diffraction data for the powder - $CdHgI_4$ compoundand powder under pressure effect

T. Rosu, L. Paruta & A. Emandi

SOUTH. BRAZ. J. CHEM., Vol.4 Nº4, 1996

57

÷.

Structural Alterations of $M_{ar}HgI_{d}$

explanation of the electrical conduction within the inorganic type M_xHgI_4 combinations consider the metallic ion mobility¹⁸ and also the preferential tendency of increasing of the crystalline cell-unit reticulate parameters, both on "a" or "c" direction.

 β -Ag₂HgI₄ and β - Cu₂HgI₄ phases are structurally identical in accordance with the literature data. A similarity between the shapes of the electrical conductibility versus pressure diagrams and the shapes of the $|\Delta d(hkl)|$ diagrams can be noticed. The diagrams in Figures 1a,b-5a,b show a correlation between the electrical conductibility and the $|\Delta d(hkl)|$ values, leading to the conclusions that the appearance or disappearance of some spaces within the crystalline lattice can contribute to the alteration of the electrical conductibility.

REFERENCES

1. J.A.A. Ketelaar, Z. Krist., 80, 190, (1931).

2. J.A.A. Ketelaar, Z. Krist., 87, 436, (1934).

3. J.A.A. Ketelaar, Z. Physik. Chem., 26B, 327, (1934).

4. J.A.A. Ketelaar, Z. Physik. Chem., 30B, 53, (1935).

5. J.A.A. Ketelaar, Trans. Faraday Soc., 34, 871, (1938).

6. L. K. Frevel and P.P. North, J. Applied Phys., 21, 1038, (1950).

7. B.L. Suchov and P.H. Keck, J. Am. Chem. Soc., 75, 518, (1953).

8. H. Hahn, G. Frank and W. Klinger., Z. Anorg. Chem., 279, 271, (1955).

9. Otsuba et all., J. Chem. Soc. Japan, 69, 1716, (1966).

10. R. Well and A.W. Lawson, J. Chem. Phys., 41, 832, (1964).

11. S. Shibata, H. Hoshino and M. Shimoji, J. Chem. Soc. (London)) Faraday Trans., 1409, (1974).

12. K. W. Browall and J. S. Kasper, J. Solid State Chem., 10, 20, (1974).

13. K. W. Browall and J. S. Kasper, J. Solid State Chem., 13, 49, (1975).

14. L. E. Olson, and P. M. Harris, Aier Force Report AFOSR-TN-59-756.

15. J. McOmber, D. F. Sriver, M. A. Ratner and J. R. Ferraro, P. Labonville Wailing-J. Phys. Chem. Solids, 43, .9, 903, (1983).

16. J. W. Brightwell, C. N. Buckley, R. C. Hollyonk and B. Ray, J. of *Materials Science Letters*, 3, 443, (1984).

17. Catalog Monsanto - 1980.

18. R. L. Ammlung, R. P. Scaringe, J. A. Ibers, D. F. Shriver and D. H. Whitmore, J. Solid State Chem., 29, 401, (1979).

19. D. Greig, D. F. Shriver and J. R. Ferraro, J. Chem. Phys., 66, 5248, (1979).

This text was introduced in this file in 2021 for compliance reasons. © The Author(s)

OPEN ACCESS. This article is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author (s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

The SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY (ISSN: 2674-6891; 0104-5431) is an open-access journal since 1993. Journal DOI: 10.48141/SBJCHEM. http://www.sbjchem.com.