SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

CONDUCTOMETRIC STUDY OF COMPLEX FORMATION BETWEEN 2,3-PYRAZINEDICARBOXYLIC ACID AND SOME TRANSITION METAL IONS IN METHANOL

43

A.A.El-Khouly, E. A. Gomaa * and S.E. Salem

Chemistry Department, Faculty of Science,

MansouraUniversity

33515 Mansoura, EGYPT

ABSTRACT

The. complexation reactions between $CuCl_2$, $CoCl_2$ and $NiCl_2$ with 2,3-Pyrazinedicarboxylic acid in methanol (MeOH) at 313.15 K were studied by conductometric methods. The association constants, formation constants and Gibbs free energies were calculated from the conductometric titration curves. On drawing the relation between molar conductance and the ratio of metal to ligand concentrations, different lines were obtained indicating the formation of 1:1 and 2:1 (M:L) stoichiometric complexes. The formation constants and Gibbs free energies of different complexes in absolute Methanol at 313.15 K follow the order:) $K_f(2:1)>K_f(1:1)$ for (M:L) and $\triangle G_f(2:1)>\triangle Gf(1:1)$ for (M:L)

KEY WORDS: Association constants; formation constants; Gibbs free energies of association; Gibbs free energies of complex formation.

RESUMO

A formação de complexos entre $CuCl_2$, $CoCl_2$, $NiCl_2$ e ácido 2,3-pirazinodicarboxílico em metanol á 313.15 K foi estudada usando métodos de condutividade. As constantes de associação e formação e as energias livres de Gibbs foram calculadas a partir de curvas de titulação condutimétrica. A relação entre a condutância molar e a proporção das concentrações metal-ligante levou a linhas retas indicando a formação de complexos estequiométricos (M:L) 1:1 e 2:1. As constantes de formação e as energias livres de Gibbs dos vários complexos em metanol à 313.15 K seguem a ordem:

 $K_f(2:l) > K_f(1:l)$ para (M:L) e $\triangle Gf(2:l) > \triangle G_f(1:l)$ para (M:L)

PALAVRAS CHAVE: Constantes de associação. Constantes de formação, Energias livres de Gibbs de associação, energias livres de Gibbs para formação de complexos.

Corresponding author:e-mail:nouran-esam@hotmail.com (Dr. E.A. Gomaa)

SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

Conductometric Study of Pyrazinedicarboxylic Acid Complexes

44

INTRODUCTION

The long range ion – ion interactions due to screened columbic forces are the most important features of electrolyte in solutions. These act together with shorter - ranged forces between the solvent molecules and between the solvent molecules and ion. Electrical conductivity (EC) is a measure measure of solvent to conduct electric current and depends on: concentration of the ions, ligand and temperature in solutions. Current is carried out by both cations and anions, but to different degree. The conductivity due to divalent cations is more than that of mono-valet cations, it is not true for anions. Metal cations with do noble gas electron configuration (alkali and alkaline earth) metal ions together with the inert molecular ions like tetraalkylammonium, phosphonium, arsonium, and trialkylsulfonium ions exhibit properties mainly determined by their charge and size [1]. Solvation of such cations in protic and polar solvents is due essentially to electrostatic ion-dipole and ion induced dipole interactions. Metal cations with filled d - orbitals, the d¹⁰ cations, exhibit partially covalent character in their interactions; their properties depend on the charge and size and partially on their electro negativity. Cations with incomplete d- orbitals called dⁿ-cations .With these cations protic and polar solvent molecules are strongly bound in complexes to a central cation through p-d orbital overlap and exchange only slowly with the bulk solvent. The formation of complexes becomes more important at high concentration of the complex ion and is likely to be more extensive in non-aqueous solvents, particularly in dipolar aprotic solvents, whereas the salvation of anions is weaker, leading to stronger complexation. Therefore conductivity study is valuable on using transition metal cations [2-7]. This work provides the analytical analyst and the biological analyst data can help him for deterring the concentration of CuCl₂ CoCl₂ and NiCl₂ in blood and different solutions.

2.3-Pyrazinedica	arboxylic acid
Identification	
Name	2,3-Pyrazinedicarboxylic acid
Synonyms	Pyrazine-2,3-dicarboxylic acid
Molecular Structure	
Molecular Formula	$C_6H_4N_2O_4$
Molecular Weight	168.11
CAS Re gistry Number	89-01-0
EINECS	201-875-3
Properties	
Melting point	185-188 °C
Water solubility	Soluble

VISIT OUR SITE: http://www.sbjchem.he.com.br

A.A. El-Khouly, E.A. Gomaa and S.E. Salem

EXPERIMENTAL

The chemicals used 2, 3-pyrazine dicarboxylic acid and methanol were provided from Merck Co. and used directly without purification. The experimental procedure to obtain the formation constant of complexes of 2,3-Pyrazinedicarboxylic acid with CuCl₂, CoCl₂ and NiCl₂ by conductometric procedure was as follows : -

A solution of metal chloride $(1 \times 10^{-3} \text{ M})$ was placed in a titration cell, at a const temperature (313.15) K, and the conductance of the solution was measured. The ligand $(1 \times 10^{-2} \text{ M})$ was transferred step-by-step to the titration cell using a precalibrated micropipette and the conductance of the solution was measured after each transfer. Addition of the ligand solution was continued until the total concentration of the (2, 3-Pyrazinedicarboxylic acid) was approximately four times higher than that of metal ions. The conductance of the solution was measured after each addition. The complex formation constant, K₆ and the molar conductance of the complex, ML, were evaluated by computer fitting to the molar conductance mole ratio data.

RESULTS AND DISCUSSIOIN

- The stability of a transition metal complex with a polydentate chelate ligand depends on a range of factors including: number and type of the donor atoms present, the number and size of the chelate rings formed on complexation. In addition, the stability and selectivity of complexities strongly depend on the donor ability and dielectric constant of the solvent and shape and size of the solvent molecules.

- 2, 3-Pyrazinedicarboxylic acid is a polydentate ligand which tends to be completely coordinated to a metal ion. This reagent is soluble in water and soluble in most organic solvents

- The specific conductance values (Ks) of CuCl₂, CoCl₂ and NiCl₂ in absolute (MeOH) were measured experimentally in absence and in the presence of ligand at 313.15 K.

The molar conductance (Λ_m) values were calculated [8] using equation (1):

4:5

Conductometric Study of Pyrazinedicarboxylic Acid Complexes

46

$$\Lambda_m = \frac{(K_s - K_{solv})K_{cell} \times 1000}{C} \tag{1}$$

Where K_s and K_{solv} are the specific conductance of the solution and the solvent, respectively; K_{cell} is the cell constant and C is the molar concentration of the CuCl₂, CoCl₂ and NiCl₂ solutions.

- The limiting molar conductances (Λ_0) at infinite dilutions were estimated CuCl₂, CoCl₂ and NiCl₂ in absolute methanol (MeOH) alone and in the presence of the ligand by extrapolating the relation between Λ_m and $C_m^{-\frac{1}{2}}$ to zero concentration (Fig.1). By drawing the relation between molar conductance (Λ_m) and the molar ratio of metal to ligand (M/L) concentrations , different lines are obtained with sharp breaks indicating the formation of 1:1 and 2:1 (M:L) stoichiometric complexes (Fig.2).

- The experimental data of (Λ_m) and (Λ_o) were analyzed for the determination of association and formation constants for each type of the stoichiometric complexes.

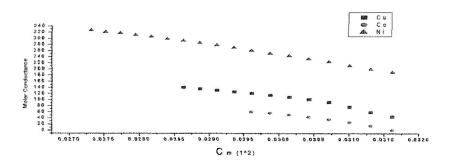


Figure 1. The relation between molar conductance (Λ_m) and (\sqrt{C}) of CuCl₂, CoCl₂ and NiCl₂ in the presence of H₂L in absolute methanol at 313.15 K.

A.A. El-Khouly, E.A. Gomaa and S.E. Salem

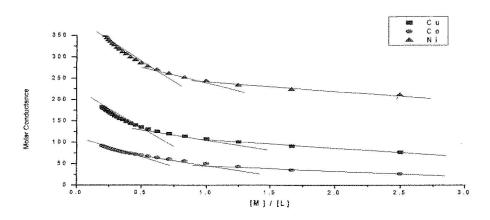


Figure 2. The relation between molar conductance (Λ_M) and the molar ratio (M/L) of CuCl₂, CoCl₂ and NiCl₂ in the presence of H₂L in absolute methanol at 313.15 K indicating the formation of 1:1 and 2:1 (M:L) stoichiometric complexes.

- The association constants of $CuCl_2$, $CoCl_2$ and $NiCl_2$ in the presence of ligand in absolute MeOH at 313.15 K for 1:2 asymmetric electrolytes were calculated [9, 10] by using equation (2):

$$K_{A} = \frac{\Lambda_{0}^{2} (\Lambda_{0} - \Lambda_{m})}{4C_{m}^{2} + \Lambda^{3} S(z)}$$
⁽²⁾

Where (Λ_m, Λ_0) are the molar and limiting molar conductance, respectively of CuCl₂, CoCl₂ and NiCl₂, C_m is molar concentration of CuCl₂, CoCl₂ and NiCl₂, S(Z) is Fuoss-Shedlovsky factor, equal one for strong electrolytes [11]. The calculated association constants are shown in Table 1.

- The Gibbs free energies of association (ΔG_A) were calculated from the association constant [12,13] by applying equation (3) :

 $\Delta G_A = -R T \ln K_A \qquad (3)$

Where R is the gas constant (8.341 J) and T is the absolute temperature (313.15 K). The calculated Gibbs free energies were presented in Table 1.

VISIT OUR SITE: http://www.sbjchem.he.com.br

47

Conductometric Study of Pyrazinedicarboxylic Acid Complexes

48

Table 1. Association constants and Gibbs free energies of association for CuCl₂, CoCl₂ and NiCl₂ in the presence of ligand in absolute MeOH at 313.15 K.

С	۸m			$\Lambda_0^2 (\Lambda_0 - \Lambda_m)$			4C²+/\³m			K _A			∆G _A (k J/mol)		
	Cu	Со	Ni	Cu	Co	Ni	Cu	Со	Ni	Cu	Со	Ni	Cu	Со	Ni
0.001	44.2365	1.5347	190.1071	4153805	409922.3	35726553	7828.18	3.814689	6670605	530.622	113404.6	5.199913	-16.3877	-30.4001	-4.30623
0.00098	58.78107	14.99206	199.8977	3698561	334627.8	34109455	13820.86	3369 845	7987726	267.6072	99.30655	4.270234	-14,5997	-12,0105	-3.79174
0.000962	76.43012	26.64074	211.637	3146071	269453	32170481	23366.25	18907.72	9479266	134.6416	14.25095	3.393774	-12.8056	-6.93958	-3.19169
0.000943	91.21989	35.77829	224.4413	2683089	218328.1	30055600	33284.27	45799.27	11305987	80.6113	4.767064	2.658379	-11.4657	-4.07922	-2.55378
0.000926	100.9503	43.57271	234.2381	2378486	174717.9	28437481	40763,85	82726.31	12852051	58.34791	2.112	2.21268	-10.6214	-1.95281	-2.07445

- The association free energies evaluated for CuCl2, CoCl2 and NiCl2 -ligand complexes are small and spontaneous indicating electrostatic attraction.

- The formation constants (K_f) for CuCl₂, CoCl₂ and NiCl₂ complexes were calculated for each type of complexes (1:1) and (2:1) (M:L) by using equation (4) [14,15]:

$$K_{f} = \frac{\Lambda_{M} - \Lambda_{obs}}{(\Lambda_{obs} - \Lambda_{ML})[L]}$$
(4)

Where Λ_m is the molar conductance of the CuCl2, CoCl2 and NiCl2 alone, Λ_{obs} is the molar conductance of solution during titration and Λ_{ML} is the molar conductance of the complex.

- The obtained values (K_f) for CuCl₂, CoCl₂ and NiCl₂ -ligand stoichiometric complexes are presented in Table 2, 3. The Gibbs free energies of formation for each stoichiometric complexes were calculated by using the equation :

$$\Delta G_{f} = -R T \ln K_{f} \qquad (5)$$

- The calculated ΔG_f values are presented in Tables 2, 3.

VISIT OUR SITE: http://www.sbjchem.he.com.br

A.A. El-Khouly, E.A. Gomaa and S.E. Salem

49

Table 2. Formation constants and Gibbs free energies of formation for 1: 1 (M/L), CuCl₂, CoCl₂ and NiCl₂-H₂L in absolute MeOH at 313.15 K.

Aabs			(A _{obs} -A _{ML})/[L]			(A _m -A _{obs)}				Kr	************	∆G _f (k J/mol)		
Cu	Co	Ni	Cu	Co	Ni	Cu	Co	Ni	Cu	Со	Ni	Cu	Со	Ni
130.5947	70.41492	279.0194	0.03436	0.026712	0.054091	381.4053	422.3387	170.9506	11100.35	15810.72	3161.006	-24.3299	-25.2538	-21.0491
125.2748	67.68132	270.7058	0.023731	0.020429	0.037443	386.7252	425.0387	179.2942	16296.39	20805.3	4788.516	-25.3328	-25.9709	-22.1339
120.062	64.96128	261.3417	0.014727	0.013209	0.021837	391.9381	429.0942	186.6583	26613.65	32485.43	6639.321	-26.614	-27.1347	-23.6752
114.3794	60.90575	252.1424	0,00676	0.007413	0.009195	397.6206	432.9314	197.8576	58818.62	58403.4	21517.08	-28.6654	-28.6659	-26.0587
108.2582	57.06859	244.2408	0.000191	0.000831	0.000619	403.7419	438.9357	205.7592	2360436	528080.5	332449.7	-36.3292	-34.4181	-33.2094
	130.5947 125.2748 120.062 114.3794	Cu Co 130.5947 70.41492 125.2748 67.66132 120.052 64.96126 114.3794 60.90575	Cu Co Ni 130.5947 70.41452 279.0194 125.2748 67.68132 270.7068 120.062 64.96128 281.3417 114.3794 60.90575 252.1424	Cu Co Ni Cu 130.5947 70.41452 279.0194 0.03436 125.2748 67.68132 270.7058 0.023731 120.062 64.96128 261.3417 0.014727 114.3794 60.90575 252.1424 0.00676	Cu Co Ni Cu Co 130.5847 70.41452 279.0194 0.03436 0.026712 125.2748 67.66132 270.7068 0.023731 0.020429 120.062 64.96126 261.3417 0.014727 0.013209 114.3784 60.90575 252.1424 0.00676 0.007413	Cu Co Ni Cu Co Ni 130.5847 70.41492 279.0194 0.05456 0.026712 0.054091 125.2748 67.60132 270.7058 0.023731 0.020429 0.037443 120.062 64.36128 261.3417 0.014727 0.013209 0.021637 114.3794 60.90575 252.1424 0.00676 0.007413 0.009195	Cu Co Ni Cu Co Ni Cu 130.5947 70.41482 279.0194 0.03436 0.026712 0.054091 581.4053 125.2748 67.68132 270.7068 0.023731 0.020429 0.037443 386.7262 120.062 64.96128 261.3417 0.014727 0.013209 0.021637 391.9381 114.3784 60.90575 252.1424 0.00676 0.007413 0.09195 397.6206	Cu Co Ni Cu Co Ni Cu Co 130.5847 70.41452 279.0194 0.03436 0.026712 0.054091 381.4053 422.3387 125.2748 67.66132 270.7068 0.023731 0.020429 0.837443 386.7252 425.0387 120.062 64.96128 281.3417 0.014727 0.013206 0.021637 391.9381 429.0942 114.3784 60.90575 252.1424 0.00676 0.007413 0.009195 397.6206 432.6314	Cu Co Ni Cu Co Ni Cu Co Ni 130.5847 70.41452 279.0194 0.03436 0.026712 0.054091 381.4053 422.3367 170.9806 125.2748 67.66132 270.7068 0.023731 0.020426 0.037449 386.7262 425.0397 179.2942 120.062 64.96126 261.3417 0.014727 0.013209 0.021637 391.9381 429.0942 186.8563 114.3784 60.90575 252.1424 0.00676 0.007413 0.009195 397.6206 432.9314 197.8576	Cu Co Ni Cu Co Ni Cu Co Ni Cu 130.5847 70.41492 279.0194 0.03436 0.026712 0.054091 381.4053 422.3387 170.9806 11100.36 125.2748 67.66132 270.7068 0.023731 0.020429 0.037443 386.7252 425.0387 179.2942 16296.39 120.082 64.36128 261.3417 0.014727 0.013209 0.021637 391.9381 429.0942 186.6563 28613.65 114.3784 60.90575 252.1424 0.00676 0.007413 0.009195 397.6206 432.8314 197.8578 58918.62	Cu Co Ni Cu Co Ni<	Cu Co Ni Cu Co Ni Cu Co Ni Cu Co Ni 130.5847 70.41452 279.0194 0.03436 0.026712 0.054091 381.4053 422.3387 170.9606 11100.35 15810.72 3161.006 125.2748 67.66132 270.7068 0.023731 0.020420 0.837443 386.7262 425.0387 179.2942 16296.39 20605.3 4786.516 120.062 64.96128 261.3417 0.014727 0.013209 0.021637 391.9381 429.0942 188.6583 28613.65 32485.43 6639.321 114.3794 60.90575 252.1424 0.00676 0.007413 0.009195 397.6206 432.9314 197.9578 58918.62 58403.4 21517.08	Cu Co Ni Cu Co Si Si Si Si<	Cu Co Ni Cu Co Co Ni Cu Co Co Co Co Co Co Co Co Co Co<

Table 3. Formation constants and Gibbs free energies of formation for 2:1 (M/L) CuCl₂, CoCl₂ and NiCl₂-H₂L in absolute MeOH at 313.15 K.

[L]	∧ _{abs}			(A _{obs} -A _{ML})/[L]			(AM-Aobs)			K _f			ΔG _f		
													(k J/mol)		
	Cu	Co	Ni	Cu	Co	Ni	Cu	Co	Ni	Cu	Co	Ni	Cu	Co	Ni
).002188	163.0003	77.87709	311.8939	0.03931	0.016292	0.05883	355,9997	412.1221	138.1061	9132.511	26295,58	2347.531	-23,8202	-26.4813	-20.2719
1.002063	148.7928	76.63127	307.0205	0.028399	0.01259	0.045439	363.2072	413.4687	142.9795	12789.27	32841.27	3146.609	-24.6999	-27.1632	-21.0371
).601935	144.3875	74.42244	299.5928	0.018111	0.007727	0.028244	357.6125	415,5776	150.4072	20297.51	53780.36	5325.254	-25.9063	-28.4515	-22.4114
).001803	140.1737	72.46812	293.5041	0.009276	0.003675	0.015335	371.8263	417.5319	156.4959	40066.58	113604.8	10205.02	-27,6839	-30.4048	-24.1103
2.001667	135.4038		286.2205	0.000623		0.002034	376.5962		163.7795	604488.3		80512.97	-34.7711		-29.5054

- The association free energies evaluated for CuCl2, CoCl2 and NiCl2 -1igand complexes indicating a spontaneous electrostatic attraction.

SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

Conductometric Study of Pyrazinedicarboxylic Acid Complexes

50

- The formation constants and Gibbs free energies of different complexes in absolute methanol at 313.15 K follow the order: $K_f(2:1) > K_f(1:1)$ for (M:L), and $\Delta G_f(2:1) > \Delta G_f(1:1)$ for (M:L).

CONCLUSION

This work concentrated on the behavior of $CuCl_2$, $CoCl_2$ and $NiCl_2$ with the ligand conductometrically .The main target is to discuss the complexation between the metal and ligand for evaluating different concentrations from the metal ion in different solutions

REFERENCES

- Trevor M.Letcher,"Development and Aplications in Solubility". The Royal Society of Chemistry", Cambridge, 2007.
- Robinson, R.A and Stokes, R.H., Electrolyte Solutions", Butterworth & Co. (Publishers) Ltd., Newton Abbot, Devon 2002..
- Barthel, J.M.G., Krienke, H., Kunz, W., "Physical Chemistry of Electrolyte Solutions, Springer- Verlag, Darmstadt, New York 1998.
- 4. Bohm, L.L. and Schulz, G.V., Ber. Bundenges. Phys. Chem., 73, 260 (1969)
- 5. Hofelmann, K, Jagur Grodzinski, J. E. Land Szware, M., J.Am. Chem. Soc., 91, 4045 (9169).
- 6. Justice, J.C., Electrochim. Acta, 16,761 (1971).
- 7. Zwanzig R., J. Chem. Phys. 38, 1603 (1963).
- 8. Gryzybkowski, W. and Pastewski, R. Electrochimica Acta 25, 279 (1980).
- 9. El-Shishtawi, N.A, Hamada, M.A. and Gomaa, E.A. J. Chem. Eng. Data 55, 5422 (2010).

10. Hamada, M.A., El-Shishtawi, N.A. and Gomaa, E.A., South Braz . J. Chem. 17, 33 (2009).

- 11. Gomaa, E.A. Thermochimica Acta 120, 183 (1987).
- 12. Gomaa, E.A. Thermochimica Acta 128, 99 (1988).
- 13. El-Dousski, F.F. Journal of Molecular Liquids 142, 53 (2008).
- 14. Takeda, Y. (1983) Bull. Chem. Soc. Jpn, 56, 3600 (1983).
- 15. Rahmi-Nasrabadi, M., Ahmedi, F., Pourmor-tazari, S.M., Ganjal, M.R.
- and Alizadeh, K. Journal of Molecular Liquids 144, 97 (2009).

The SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY (ISSN: 2674-6891; 0104-5431) is an open-access journal since 1993. Journal DOI: 10.48141/SBJCHEM. http://www.sbjchem.com.

This text was introduced in this file in 2021 for compliance reasons. © The Author(s)

OPEN ACCESS. This article is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License , which permits use, sharing , adaptation , distribution , and reproduction in any medium or format , as long as you give appropriate credit to the original author (s) and the source , provide a link to the Creative Commons license , and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.