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ABSTRACT 

Background: Coronavirus Disease-2019 (COVID-19) appears in individuals asymptomatically and in various 
symptomatic forms. Symptomatic diversity can result in diagnosis failures, hospitalization, admission to intensive 
care, multi-organ failure, and death. The causes and risk factors of the severity of disease symptoms are 
uncertain. This uncertainty can only be resolved by elucidating the effects of host genes and genetic variations 
on different phenotypes. Aim: This review aimed to emphasize the importance of large-scale genotype-phenotype 
correlation studies in elucidating the phenotypic diversity in COVID-19 disease. Methods: All publications related 
to Phenome-Wide Association Study (PheWAS)  in the PubMed database were searched. PheWAS studies 
applied to COVID-19 patients have been identified. In addition, studies applied to the genome-wide association 
study (GWAS)- Electronic health records (EHRs) data and additionally matched to the gene expression data were 
systematically reviewed. The latest PheWAS methodology and its importance in Large-scale genotype-phenotype 
correlations are discussed within the context of published COVID-19 studies. Results: According to our PubMed 
search data, there are few PheWAS studies on COVID-19 disease. This review explains the use of PheWAS 
studies applied to health records and GWAS data, and colocalization studies applied to expression quantitative 
trait locus (eQTL) analysis to understand the phenotypic variability of COVID-19. Discussion; Although there is 
a very limited number of PheWAS studies on COVID-19 diseases, these studies have obtained important data. 
At the current stage, there is a need for such studies in COVID-19 research. Conclusions: PheWAS is an ideal 
method for large-scale genotype-phenotype correlation studies that can reveal genetic diversity and phenotypic 
diversity in the pathophysiology of the disease. 

Keywords: Phenome-wide association study (PheWAS), Genome-wide association study (GWAS), Electronic 
health records (EHRs), Large-scale genotype-phenotype correlation, COVID-19. 
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1. INTRODUCTION   
 The new coronavirus disease (COVID-19) 
is caused by the severe acute respiratory 
syndrome Coronavirus-2 (SARS-CoV-2) (WHO, 
2022). According to the World Health Organization 
(WHO), data published as of 25 April 2022 shows 
507,501,771 individuals have been affected by 
COVID-19, of which 6,220,390 individuals have 
died as a result of the disease (Dashboard, 2022). 
It has caused a global pandemic and constitutes a 
public health problem (Mahase, 2020). COVID-19 
disease can be seen as symptomatic and 
asymptomatic. The course and severity of the 
disease are different from person to person (Guan 
et al., 2020; Kotsev et al., 2021). 

An important question is the role of host 
genes in COVID-19 infection. To answer this 
question, we need to understand the effects of 
host genes and genetic variations on the different 
phenotypes of COVID-19. Large-scale genotype-
phenotype correlation studies have been 
demonstrated to do this in several different studies 
(Gaziano et al., 2021; Moon et al., 2021; Verma et 
al., 2021). These studies are most beneficial in the 
presence of clinical heterogeneity. Clinical 
heterogeneity investigation is needed when 
different disease phenotypes are compared 
between case and control groups.  Therefore, the 
differences in endotype, endophenotype, and 
symptomatic severity of a disease can be 
understood. Genomic medicine is committed to 
elucidating the genetic diversity underlying the 
phenotypic difference in disease (Manolio et al., 
2013). Genomic medicine differs from traditional 
genetics in that it regards the functions-
interactions of all variations and genes in the 
genome (Guttmacher et al., 2002). This field deals 
with the hereditary components of monogenic, 
polygenic, and infectious diseases. Doing this 
provides an understanding of the molecular basis 
of all diseases and enables the development of 
targeted therapy and personalized treatment 
strategies. Genomic medicine combines 
multidisciplinary fields and focuses on diseases by 
matching genetic characteristics with phenotypic 
data (Manolio et al., 2013; Wei et al., 2017). The 
use of genomic medicine strategies has become 
essential in COVID-19 research. The basis of 
these strategies involves genome-wide 
association study (GWAS) data and Electronic 
health records (EHRs) containing phenotypic data 
(Linder et al., 2021). EHRs include all individual 
disease, clinical, and treatment information rather 
than cohorts specific to a single disease (Linder et 
al., 2021). At the same time, since it is comprised 
of data from large populations, there is a wealth of 

data covering a variety of population 
characteristics (Linder et al., 2021). 

Phenome-wide association studies 
(PheWASs) have been used in the evaluation of 
GWAS results (Denny et al., 2010). PheWAS 
determines the full phenotypic spectrum 
associated with each genetic trait (Hebbring, 
2014). PheWAS was initially developed to reveal 
the large-scale genotype-phenotype correlations 
of complex diseases. However, it can be used to 
evaluate the risk score of genetic variations with 
disease using EHRs (Denny et al., 2016). 
PheWAS has emerged as a popular high-
throughput framework mechanism capable of 
combining EHR data with GWAS data (Linder et 
al., 2021). In addition, data obtained in PheWAS 
can be matched with tissue-specific expression 
Quantitative Trait Locus (eQTL) data to help 
understand the biological mechanism underlying 
the genotype-phenotype relationship (Moon et al., 
2021). 

This review describes the PheWAS trend 
from GWAS, and the methodology of PheWAS. 
Then, genotype and phenotype data resources for 
COVID-19 research are mentioned. Next, the 
importance of PheWAS in cross-genotypic-
phenotypic correlation and large-scale genotype-
phenotype correlation is discussed. Finally, 
PheWAS studies on COVID-19 patients using 
GWAS data and EHR-based data were 
mentioned.  This review aims to give an overview 
of the current state of COVID-19 research, 
focusing on genotype-phenotype-related studies. 
PheWAS is an ideal method for large-scale 
genotype-phenotype correlation studies. As a 
result, the genetic diversity in pathophysiology and 
phenotypic variety of the disease can be revealed. 
    

2. METHODS  
 The method explains the genetic and 
phenotypic data used in PheWAS analyses. The 
methodology of GWAS analysis, which is used as 
a genetic data source in PheWAS, and its 
integration into PheWAS analysis are detailed. 
EHRs, which are also included as the phenotypic 
data set in the PheWAS analysis, were also 
examined. It is mentioned how the PheWAS 
analysis is applied to these data. Finally, the 
phenotypic diversity in covid-19 patients is 
mentioned. 

PubMed / National Center for 
Biotechnology Information 
(https://pubmed.ncbi.nlm.nih.gov/) was used as 
the source of information about the PheWAS 
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analyzes applied in our review. PheWAS research 
articles on COVID-19 disease were selected, and 
their results were examined. PheWAS research 
articles and review articles applied to other 
diseases were excluded. 
In addition, 2 terms (A / B ) were considered in 
selected research articles; A) PheWAS analysis 
articles containing genotypic and phenotypic 
information B) articles matching phewas analysis 
with gene expression data. 

The research was conducted from 
February 01 to July 01, 2022. The period searched 
on the databases was from 2007 to 2022 (includes 
the date PheWAS analyzes were first performed 
and the date to date). 
 

3. RESULTS AND DISCUSSION 
3.1. Results 

To date, all publications related to PheWAS 
have been scanned in PubMed (Figure 1). These 
publications selected articles to establish a large-scale 
genotype-phenotype relationship in COVID-19 
patients. Articles were determined according to A and 
B terms. 

Table 1. Data from PheWAS publications 
scanned in PubMed and articles included and 

excluded from our systematic review 
Term Database Results Exclusions 

“A” PubMed 3 777 

“B” PubMed 3 777 
 
Few studies of PheWAS have been 

conducted on COVID-19 diseases. However, quite 
comprehensive and important data have been 
obtained. Increasing the number of these studies 
is very important. These studies appear to provide 
full phenotypic data for each GWAS significant 
variation or genetic locus (Table 2). We have 
systematically examined and discussed the 
COVID-19 phenotypes and comorbidities with 
which these genetic traits are highly correlated. 

 
3.1.1. The GWAS era and the trend toward PheWAS 

Investigating the effects of variations that 
underlie human genetic diversity has been the 
focus of attention since the completion of the 
human genome project. Advancing molecular 
genetic techniques allow for pleiotropic effect 
studies in disease research. Pleiotropy is when 
any variation in the genome affects multiple 
phenotypes (Tyler et al., 2016). Pleiotropy 

investigates the causes of phenotypic differences 
in diseases from individual to individual and forms 
the basis of knowledge for personalized medicine 
applications (Sivakumaran et al., 2011). GWAS 
has been used for large-scale genotypic-
phenotypic data sets to illuminate human 
pleiotropy (Hindorff et al., 2009; Sivakumaran et 
al., 2011). GWAS investigates the pleiotropic 
effect at the level of variation between a large 
number of cases and controls. GWAS 
simultaneously analysis millions of variations 
across the whole genome (Consortium, 2007; 
Hindorff et al., 2009). GWASs analyze single 
nucleotide polymorphisms (SNPs) and can display 
effects as minor as P<5×10−7 (Consortium, 2007).  
In GWAS, both chip-based microarray and next-
generation sequencing techniques are used for 
analysis. GWASs usually focus on analyzing 
variations found in the intergenic, intronic, and 
exonic regions of the human genome  (Li et al., 
2008). Significant variants found are not always 
causal; however, linkage disequilibrium (LD) can 
assist in identifying closely correlated variants 
(Anderson et al., 2011). 

Population cohorts were defined through 
the genetic diversity of different ethnic groups 
(Benjamin et al., 2007). Consortium studies were 
conducted by combining these population cohorts 
(Consortium, 2007). These consortium studies 
have contributed to revealing even minor effect 
variations and genetic differences in populations 
(Consortium, 2007). The genetic effect size is 
defined by looking at the allelic frequency of the 
variations in cases and controls (Bush et al., 
2012). According to this genetic effect size, the 
disease-related genetic risk score of the variation 
is identified (Consortium, 2007; Hindorff et al., 
2009). 

Furthermore, it can explain the importance 
of ethnic origin, genetic differences, and genetic 
predispositions in the pathophysiology of the 
disease. GWAS has also successfully identified 
genetic risk factors involved in the epidemiology, 
development, severity, clinical differences, and 
response to treatment of the disease (Michailidou 
et al., 2015). Thus, a large number of new genetic 
traits associated with diseases have been 
detected (Hindorff et al., 2009). 

GWAS offers researchers a unique 
opportunity to demonstrate the effect of variations 
on disease phenotypes. With the rapid increase in 
GWAS studies, and the data size increasing from 
Array-based technology to NGS, there was a need 
to establish a biobank for these samples and for 
the ease of access for researchers. Existing 
GWAS data were brought together by the US 
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National Human Genome Research Institute 
(NHGRI) in 2008, and the GWAS catalog was 
created. In 2010, the GWAS catalog website was 
established in collaboration with the European 
Bioinformatics Institute (EMBL-EBI) 
(https://www.ebi.ac.uk/gwas/). This catalog of 
associations is increasing every year. The catalog 
details all current SNP-trait relationships to date 
from common to rare diseases. The data collected 
in the catalog is combined with other sources to 
allow statistical project-centric modeling (Buniello 
et al., 2019).  

The GWAS era has accelerated human 
pleiotropy research and led to cross-phenotype 
associations studies (Tyler et al., 2016). The 
cross-phenotype association approach has 
attracted great attention in the scientific world 
(Denny et al., 2010). The first PheWAS was 
performed in 2010 and was utilized to understand 
genetic pleiotropy in humans (Denny et al., 2010). 
PheWAS can be considered as an inverse method 
to GWAS. In GWAS studies, the relationship of 
many genetic traits with a specific phenotype is 
investigated. However, in PheWAS analyzes, the 
relationship of a single genetic trait with many 
clinical phenotypes is studied (Hebbring, 2014). 
Therefore, PheWAS analysis is complementary to 
GWAS in disease research (Hebbring, 2014). 

PheWAS enables the simultaneous 
identification of associations between a genetic 
trait and phenotypic traits, clinical manifestations, 
and many diseases. At the same time, genetic 
predispositions underlying disease comorbidities 
may also emerge (Karaca et al., 2020). 
Furthermore, it can reveal new genotype-
phenotypic correlations as thousands of 
phenotypes can be compared with significant 
variations of GWAS (Cronin et al., 2014; Denny et 
al., 2010; Karaca et al., 2020). For example, one 
study applied PheWAS to FTO gene variants 
previously reported to be associated with type 2 
diabetes and obesity. They used the eMERGE 
Network (Gottesman et al., 2013) and BioVU DNA 
biobank data (Roden et al., 2008). The study found 
that the FTO gene variant, associated with body 
mass index (BMI), is also associated with sleep 
apnea. Furthermore, the variant associated with 
obesity, non-alcoholic liver disease, fibrocystic 
breast disease, and gram-positive bacterial 
association were defined (Cronin et al., 2014). 

The web tools GRASP (Leslie et al., 2014), 
GeneATLAS (Canela-Xandri et al., 2018), and 
PhenoScanner (Staley et al., 2016) are used to 
perform PheWAS analysis. These websites 
contain thousands of GWAS study information 
with millions of SNP-trait information. It allows 

users to query the full phenotypic spectrum of 
each SNP with PheWAS analysis. 

The genetic component of PheWAS is not 
restricted by GWAS significant SNPs. Rare 
variations (MAF < 0.05), mitochondrial variations, 
copy number variation (CNV), and structural 
variation (SV) data can also be analyzed (Basile et 
al., 2016; Mitchell et al., 2014). On the other hand, 
apart from genetic data, clinical analysis results, 
biochemical parameters, environmental 
measures, and quantitative values can be used in 
biomarker studies for disease (Liao et al., 2017). 

 
3.1.2. Phenome information collection in PheWAS 

PheWAS can be used for matching 
metadata collected from longitudinal studies 
(Denny et al., 2010; Denny et al., 2016). 
Longitudinal studies identify risk factors for a 
particular disease over multiple time points. It is a 
research strategy that includes reproducible 
observations of the same variables for short or 
long periods (Shadish, 2002). This strategy also 
categorizes the personal characteristics of the 
records that exist retrospectively over time or new 
data to be collected prospectively. The EHR, 
which contains demographic and clinical 
characteristics, is longitudinal in nature (Denny et 
al., 2016). For PheWAS, EHRs are utilized as a 
source of phenome information (Verma et al., 
2021; Zhou et al., 2021). 

 
3.1.3. EHR-based PheWAS  

Electronic health records (EHR) with more 
than 50 years of history have gained popularity in 
recent years (Gottesman et al., 2013; McDonald et 
al., 1977). Many countries have started to organize 
their data by establishing national health record 
systems  (Linder et al., 2021). EHRs have rapid 
and automated clinical data collection from when 
patients are recruited. It contains the individual 
and social characteristics of diseases. EHRs 
describe the prevalence, course, and outcomes of 
diseases at the national level while also providing 
an opportunity to compare and match across 
international EHRs (Linder et al., 2021). EHR data 
provides the opportunity for electronic 
phenotyping (e-phenotyping). It represents a more 
comprehensive e-phenotyping information 
collection as they automate clinical data collection 
(Linder et al., 2021). The e-phenotyping 
information collection produces computational 
large-scale phenotypic big data in terms of disease 
monitoring, prevention, and development of 
preventive health strategies and treatment 

https://www.ebi.ac.uk/gwas/
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strategies. As EHR data has accumulated over the 
years, researchers have highly developed and 
structured the content of data types. These data 
types include all observable characteristics of an 
individual, such as age, gender, BMI, past-existing 
diseases (hereditary disease, chronic complex 
disease, infectious disease), drugs used, and 
allergic conditions (Casey et al., 2016; Denny et 
al., 2013; Linder et al., 2021). 

A procedural medical code system is also 
implemented within EHRs. This code system 
called the International Statistical Classification of 
Diseases, and Related Health Problems (ICD), is 
a globally accepted system in which medical 
diagnoses are standardized (Krawczyk et al., 
2020). The ICD compares and contrasts disease 
statistics on a global scale. It also procures 
convenience in identifying the prevalence of 
diseases, treatment strategies, and taking 
preventive measures at the international level 
(Harrison et al., 2021). In addition, disease-based 
phenotypic data algorithms have been developed, 
including ICD data in the EHR such as PheWAS. 

The emergence of EHR and the creation of 
EHR-linked biobanks allow large-scale genotype-
phenotype correlations to be established 
(Salvatore et al., 2021). There are many EHR-
linked biobanks, and these biobanks contain multi-
omics data as well as genomic data. For example, 
the UK Biobank (Allen et al., 2014), Chinese 
Kadoorie Biobank (Chen et al., 2011), Vanderbilt 
BioVU (Roden et al., 2008), Electronic Medical 
Records and Genomic Network (eMERGE) 
(Gottesman et al., 2013), which contains data on 
more than 200 000 individuals worldwide, are 
among the biobank data sources that can be 
analyzed in PheWAS. The advancement of 
machine learning algorithms and the targeting of 
big data analysis led to the design and 
development of PheWAS (Gagliano Taliun et al., 
2020; Salvatore et al., 2021). This advancement 
enables comprehensive correlation analysis 
based on multivariate regression analysis by 
integrating multiple datasets (Bush et al., 2012). 
Since PheWAS is a complex big data analysis, it 
can illuminate the hidden and unknown gene-
phenotype relationships associated with any 
disease (Gagliano et al., 2020; Karaca et al., 2020; 
Salvatore et al., 2021). It can also scan for the 
reflection of genetic predispositions leading to 
population stratification and population-specific 
disease phenotypes (Bush et al., 2012). In 
addition, combining and comparing different 
populations data can expose the effect of 
ancestral-ethnic origin differences on disease 
phenotypes (Verma et al., 2021). 

3.1.4. Mapping eQTL information to PheWAS 

When PheWAS with phenotype data is 
applied to GWAS significant variations, the full 
phenotypic spectrum associated with the SNP is 
identified. Tissue-specific expression quantitative 
trait locus (eQTL) data and PheWAS data 
colocalization analysis can be applied to elucidate 
the underlying pathophysiological condition in the 
reflection of genotype to phenotype (Moon et al., 
2021). eQTL information is available on the 
Genotype-Tissue Expression (GTEx) portal and is 
open to researchers (www.gtexportal.org). The 
GTEx v8 dataset includes whole-genome 
sequencing (WGS) and RNA-sequencing (RNA-
seq) information of 17,382 samples from 838 
donors. Gene expression data of cis and trans 
variations of 52 tissues and two cell lines are also 
included (www.gtexportal.org). The cis-eQTL 
value gives the change in expression level relative 
to the transcriptional start size of genes located 
close to the LD of the variations (G. Consortium, 
2020). In addition, cis-eQTL values can be 
calculated in multi-tissue and single-tissue (G. 
Consortium, 2020). In disease studies, the cis-
eQTL value in the tissue associated with the 
disease allows for the interpretation of the 
variation affect on pathogenesis (G. Consortium, 
2020). 

 
3.1.5. Phenotypic diversity in COVID-19 patients 

Coronavirus Disease-2019 (COVID-19) is 
observed in different individuals as asymptomatic 
and in various symptomatic forms. This diversity 
can give rise to diagnosis, outpatient treatment, 
hospitalization, intensive care unit admission, 
multiple organ failure, and death (Guan et al., 
2020). The symptomatic variability in COVID-19 is 
connected with the level of inflammatory response 
triggered by immune system activation. A 
systematic immune reaction occurs due to the 
effector cells involved in the immune response, the 
release of mediators that mediate inflammation, 
and their complex interactions. This immune 
reaction sometimes causes immune 
hyperactivation or dysregulation, resulting in an 
abnormal cytokine storm. This uncontrolled 
immune response results in the development of 
acute respiratory distress syndrome (ARDS), 
increased disease severity, multiple organ failure, 
and even death in COVID-19 infection (Kotsev et 
al., 2021). The basis of this uncontrolled immune 
response and infection susceptibility, which varies 
from person to person, is very likely to be based 
on host genetic diversity. 
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The causes and risk factors influencing the 
severity of disease symptoms (mild, moderate, 
and severe complications) are uncertain. Many 
studies have been conducted on the severity and 
mortality rate of COVID-19 disease. In these 
studies, it has been determined that advanced 
age, male gender, socioeconomic level, type-2 
diabetes, cardiovascular diseases, hypertension, 
kidney diseases, cancer, obesity, and asthma are 
connected with severe complications in COVID-19 
(Fang et al., 2020; Williamson et al., 2020). 
However,  these findings are analyzed based on 
observational and numerical data from limited, 
regional, hospital-based studies (Williamson et al., 
2020). It does not reflect the influence of human 
genotypic structure, genetic predisposition, cross-
genotypic-phenotypic correlation, and the 
importance of population diversity. COVID-19 is 
not well understood and how host genetic factors 
contribute to the pathogenesis of disease severity 
difference and its interaction with its comorbidities 
(Williamson et al., 2020). 

 
3.2. Discussions 

Identifying the risk factors that cause 
COVID-19 severity and symptomatic variation 
may provide clinical and therapeutic advantages 
and contribute to developing protective-preventive 
strategies. Various host genetic traits may likely be 
risk factors influencing viral susceptibility, immune 
response, disease progression, and outcomes 
(Choudhary et al., 2021; Debnath et al., 2020). 
GWAS offers the opportunity to identify potential 
candidate genes associated with severity, 
development, and symptomatic differences of 
COVID-19 infection. Since COVID-19 first 
appeared, numerous GWAS have been performed 
to identify potential candidate host genetic traits. 
Variations of SLC6A20, LZFTL1, CCR9, CXCR6, 
XCR1, FYCO1 (3p21.31) (Group, 2020), ABO 
(9q34.2) (Wu et al., 2020), HLA (6p21.33) (Novelli 
et al., 2020), TMEM189-UBE2V1 (20q13.13) 
(Wang et al., 2020), ACE2 (Xp22.2) (Hou et al., 
2020), TMPRSS2 (21q22.3) (Anastassopoulou et 
al., 2020; Hou et al., 2020), TLR7 (Xp22.2) 
(Anastassopoulou et al., 2020), ApoE (19q13.32) 
(Kuo et al., 2020), IFITM3 (11p15.5) (Thevarajan 
et al., 2020; Zhang et al., 2020), CTSB, CTSL 
(8p23.1, 9q21.33) (Lee et al., 2020; Yang et al., 
2021), PIEZO (16q24.3) (Cheng et al., 2020), 
OAS1, OAS2, OAS3 (12q24.13) (Pairo-Castineira 
et al., 2021), TYK2 (19p13.2) (Pairo-Castineira et 
al., 2021), DPP9 (19p13.3) (Pairo-Castineira et al., 
2021), IFNAR2 (21q22.1) (Pairo-Castineira et al., 
2021) genes were found to be associated with 
COVID-19 infection. So far, a large amount of 

SNP-trait information has been stored in the 
GWAS catalog (https://www.ebi.ac.uk/gwas/) and 
at the COVID-19 Host Genetics Initiative 
(https://www.covid19hg.org/) that can be used in 
COVID-19 research. However, GWAS has some 
limitations; i) It can only associate variants with a 
single phenotype and does not reflect the full 
phenotypic spectrum (Kotsev et al., 2021), and ii) 
It is insufficient to determine the comorbidities of 
COVID-19 (Kotsev et al., 2021). PheWAS analysis 
overcomes these limitations by utilizing GWAS 
data with EHR Data.  

Many PheWAS studies have been 
conducted on COVID-19, matching GWAS and 
EHR data (Crespi, 2020; Gaziano et al., 2021; 
Lopera et al., 2020; Moon et al., 2021; Verma et 
al., 2021; Zhou et al., 2021) (Table 1). Variations 
related to COVID-19 severity and severe clinical 
symptoms in a PheWAS study were associated 
with many different phenotypes (Verma et al., 
2021).  In the related study: ABO locus rs495828 
variant was associated with 53 different 
phenotypes, the most significant of which was 
detected with venous embolism (Verma et al., 
2021). The ABO locus rs505922 variant was linked 
with 59 phenotypes and strongly associated with 
thrombosis count (Verma et al., 2021). It has been 
demonstrated that the MUC5B locus rs35705950 
variant increases the risk of idiopathic fibrosing 
alveolitis and is associated with 11 different 
respiratory features (Verma et al., 2021). There 
was a negative correlation between the risk of 
CRHR1 gene rs61667602 variant pulmonary 
fibrosis and TYK2 locus rs11085727 variant 
autoimmune conditions (Verma et al., 2021). In 
another study, it was determined that the 
rs13050728 variant is a risk factor for COVID-19 
hospitalization. Through the eQTL analysis, the 
expression levels of TPSG1 and VEGFR2 genes 
in plasma were lower than in other tissues 
(Gaziano et al., 2021). In addition, the rs4830976 
variant was related to COVID-19 hospitalization 
and caused changes in the expressions of the 
ACE2, CA5B, CLTRN, and VEGFD genes related 
closely through LD in the eQTL coagulation 
analysis (Gaziano et al., 2021).  

PheWAS can be of benefit to elucidating 
the association of a single disease-related 
significant locus with intermediate phenotypes 
(Zhou et al., 2021). It is a strategy that can be 
especially effective for drug and biomarker 
research (Crespi, 2020). The role of the relevant 
locus in the pathophysiology of the disease can be 
revealed using simultaneous eQTL information 
with PheWASs. For example, to explain the 
relationship between the 3p21.31 genetic locus 

https://www.ebi.ac.uk/gwas/
https://www.covid19hg.org/
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and COVID-19 severity, the expression level 
changes of the genes in this locus caused by the 
rs67959919 variation were examined (Zhou et al., 
2021). This PheWAS and eQTL analysis observed 
that the rs67959919 variation caused changes in 
the monocyte count by increasing CCR1 gene 
expression and decreasing CCR2 gene 
expression. Furthermore, it has been revealed that 
the same variation plays a role in the level 
changes in eosinophil and neutrophil counts by 
decreasing the gene expression of the CCR3 gene 
(Zhou et al., 2021). In another study, seven 
different GWAS significant variations (rs657152, 
rs11385942, rs150892504, rs138763430, 
rs117665206, rs147149459, and rs151256885) 
with COVID-19 mortality rates were elucidated 
concerning drugs (Amlodipine and aspirin) and 
other clinical phenotypes for medical drug 
targeting (Crespi, 2020). A locus-targeted 
PheWAS analysis focused on angiotensin-
converting enzyme 2 (ACE2) and serine protease 
TMPRSS2 genes, which are known to be involved 
in the virus infecting human cells in COVID-19 
infection (Lopera Maya et al., 2020). During 
infection, the ACE2 receptor protein is responsible 
for cell invasion, while the TMPRSS2 protein takes 
part in preparing the S protein (Yan et al., 2020). 
Genotype-phenotype correlation analysis was 
performed between 1273 genetic variations 
(ACE2 and TMPRSS2 genes were in and near 
regions localized) and 178 quantitative 
phenotypes in the related study (Lopera Maya et 
al., 2020). In the ACE2 gene, the variant 
rs17264937 was highly correlated with 
Eosinophils, and the rs5980163 variant with 
triglycerides. rs150965978 is associated with 
plasma levels of CHIT1 protein, while the variant 
rs28401567 has been reported to be significantly 
associated with thrombocytes in the TMPRSS2 
gene (Lopera et al., 2020). 

According to clinical data, individuals with 
severe clinical diagnosis in COVID-19 also have a 
pre-existing disease (Fang et al., 2020). The ability 
of PheWAS to define the cross genotype-
phenotype correlation is important in the 
identification of disease comorbidities and in 
stating the underlying genetic traits. One study 
focused on determining the comorbid disease-
related phenotypes of 22 variations associated 
with severe COVID-19 respiratory failure and 
applied PheWAS and eQTL colocalization 
analysis to GWAS (Moon et al., 2021). Five 
variations (rs647800, rs11385492, rs12610495, 
rs3934992, rs134130) were significantly 
associated with 13 different endocrine, metabolic 
and immunological phenotypes (Moon et al., 
2021). Variations of rs647800 and rs11385492 

have been reported to be risk factors for 
monocyte-induced inflammation related to the 
number of monocytes and the percentage of 
monocytes found in the blood. The rs647800 
variation was associated with thrombin time, and 
they suggested that it may be effective in 
developing coagulopathies (comorbidity of severe 
COVID-19). They revealed that the rs12610495 
variation is also associated with fibrotic idiopathic 
interstitial pneumonias (comorbidity of severe 
COVID-19). The rs3934992 variation was found to 
be related to the waist-hip ratio (adjusted for BMI), 
and it was thought to be a risk factor in obesity 
(comorbidity of severe COVID-19) (Moon et al., 
2021). 

Through PheWAS analysis, changes in 
risk factors were also observed according to 
COVID-19 severity and ethnicity differences. In 
addition, a correlation was observed between the 
LMNA gene rs581342 variation and neutropenia, 
HL-DRA gene rs9268576 variation, and 
thyrotoxicosis in parallel with the severity of 
COVID-19 in Africans (Verma et al., 2021).  

In some COVID-19 studies, PheWAS was 
applied only to EHR data (Oetjens et al., 2020; 
Salvatore et al., 2021; Song et al., 2021). In these 
studies, COVID-19 positive diagnosis, severity, 
hospitalization, and mortality were matched with 
the ICD code information of the individuals. 
Thousands of phenotypic codes (demographic 
features, clinical findings, biochemical 
parameters, age, gender, and all genetic and 
chronic disease information of individuals) were 
used in these cohorts consisting of thousands of 
individuals (Oetjens et al., 2020; Salvatore et al., 
2021; Song et al., 2021). In addition, some studies 
focus on ethnic differences (Salvatore et al., 
2021). For example, in non-Hispanic Whites, 
Hematopoietic conditions were associated with 
ICU admission/death, and mental disorders were 
associated with death (Salvatore et al., 2021). 
Also, in non-Hispanic Blacks, Circulatory system 
and genitourinary conditions were associated with 
ICU admission/death (Salvatore et al., 2021). As a 
result, large-scale phenotypic correlations were 
detected. However, these studies are based on 
numerical and observational data. Since they were 
not matched with genotypic data, the genetic 
predisposition underlying the detected correlations 
could not be fully understood. 

GWAS provides an excellent source of 
genotypic data. It allows the comparison of sick-
healthy individuals and enables the determination 
of genetic predispositions according to population 
differences. However, it is not sufficient on its own 
as it reflects the genetic spectrum associated with 
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a single phenotype. Therefore, there is a need for 
bioinformatics methods to match phenotypic data 
with GWAS data. COVID-19 has different 
symptomatic forms and variations in disease 
severity from person to person. Clarifying the 
genetic predispositions underlying these 
phenotypic diversity is important for elucidating the 
pathogenesis of the disease and for a good 
prognosis. As a source of phenotypic data, EHRs 
provide large-scale data of enormous quality. 
However, phenotypic data alone are not sufficient 
to elucidate the disease pathogenesis and 
prognosis. PheWAS analysis has been developed 
as a bioinformatics method that can be applied to 
both GWAS data and EHR data. It can also 
illuminate the full phenotypic spectrum by 
matching both data. On the other hand, by 
matching eQTL data with PheWAS data, it 
contributes to the elucidation of the molecular 
mechanisms involved in the pathogenesis. As a 
result of processing these data together with 
PheWAS analysis, it provides the opportunity to 
understand the reasons for the phenotypic 
diversity of COVID-19. 

 

4. CONCLUSIONS 
Performing large-scale genotype-

phenotype correlation studies are important to 
determine an individuals risk for the prevention 
and evaluation of disease severity and 
symptomatic variations. In addition, conducting 
studies on different populations and comparing 
them on a global scale would also be valuable in 
elucidating genetic predispositions arising from 
ethnic differences. At this point, PheWASs emerge 
as an important approach for profiling large-scale 
genotype-phenotype correlations. The data 
already available will prepare the foundation for 
identifying high-risk COVID-19 individuals, 
developing protective-preventive treatment 
strategies, and personalized medicine over the 
standardized-for-everyone approach. This review 
provides an overview of the PheWAS 
methodology and its application to COVID-19 
studies. We mention the current methodology, 
data and analytical resources, and COVID-19-
associated genetic variant summaries for future 
PheWASs. To date, many studies have been 
carried out globally, and a wealth of data is 
available from GWASs and EHRs. PheWAS is an 
ideal approach for large-scale genotype-
phenotype correlation studies. The quality, 
number, and impact of such studies will increase 
in the near future and gain the importance it 
deserves. Thus, the role of host genetic 
predispositions and genetic diversity in phenotypic 

differences of Covid-19 can be revealed.  
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Figure 1.  There are 780 PheWAS publications published in Pubmed so far 
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Table 2.  The data of PheWAS analyses carried out to determine the large-scale genotype-phenotype 
correlation using GWAS and EHR data in COVID-19 research are given in the table. In the PheWAS 

analyzes performed, there are those with the most significant genotype-phenotype correlation 
 

Term rs number Lokus/Gene Other PheWAS phenotypes Covid-19 
phenotypes and severity References 

A rs495828 ABO lokus Venous embolism Critical illness and 
hospitalization of Covid-19 (Verma et al., 2021) 

A rs505922 ABO lokus Thrombosis Critical illness and 
hospitalization of Covid-19 (Verma et al., 2021) 

A rs35705950 MUC5B locus İdiopathic fibrosing alveolitis, respiratory 
features 

Critical illness and 
hospitalization of Covid-19 (Verma et al., 2021) 

A 

rs61667602 CRHR1 

reduced risk of pulmonary fibrosis, Post-
inflammatory pulmonary fibrosis, Idiopathic 

fibrosing alveolitis, Other alveolar and 
parietoalveolar 

pneumonopathy 

Hospitalization of Covid-19 (Verma et al., 2021) 

A 

rs11085727 TYK2 locus 

Psoriasis, Cutaneous lupus erythematosus, 
Lupus (localized and systemic), Psoriatic 
arthropathy, reduced risk for autoimmune 

conditions, 

Critical illness and 
hospitalization of Covid-19 (Verma et al., 2021) 

A rs9501257 HLA-DPB1 Rosacea Critical illness of Covid-19 (Verma et al., 2021) 
A rs9268576 HLA-DRA Rheumatoid arthritis and other inflammatory 

polyarthropathies Hospitalization of Covid-19 (Verma et al., 2021) 

A rs111837807 CCHCR1 Sarcoidosis, Vitiligo Critical illness and 
hospitalization of Covid-19 (Verma et al., 2021) 

A rs9896243 NSF Post-inflammatory pulmonary fibrosis Critical illness of Covid-19 (Verma et al., 2021) 
B rs13050728 TPSG, 

VEGFR2  Covid-19 of hospitalization (Gaziano et al., 
2021) 

B 
rs4830976 

ACE2, CA5B, 
CLTRN, 
VEGFD 

 Covid-19 of hospitalization (Gaziano et al., 
2021) 

B rs67959919 CCR, CCR2 Monocytes count Severe Covid-19 (Zhou et al., 2021) 
B rs67959919 CCR3 Eosinophil count, neutrophil count Severe Covid-19 (Zhou et al., 2021) 
A 

rs657152 ABO 
blood group 

Clotting time, (PEF) peak expiratory flow, HB 
concentration,  monocyte count, Amlodipine, 

and aspirin 
Covid-19 mortality (Crespi et al., 2020) 

A 

rs11385942 LZTFL1, 
CCR9 

Monocyte, neutrophil, granulocyte, eosinophil 
and macrophage traits, lymphocyte count,  

antithrombotic agents, hypertension, Type 2 
diabetes, 

blood clot, DVT (deep vein 
thrombosis), allergic and atopic diseases, and 

BMI 

Covid-19 mortality (Crespi et al., 2020) 

A rs150892504 EVAP2 Platelet count and BMI, Covid-19 mortality (Crespi et al., 2020) 
A 

rs138763430 BRF2 
Lymphocyte count and FEV1/FVC ratio 
(forced expiratory volume/forced vital 

capacity), Amlodipine 
Covid-19 mortality (Crespi et al., 2020) 

A rs117665206 TMEM181 FEV1, PEF, Amlodipine Covid-19 mortality (Crespi et al., 2020) 
A rs147149459 ALOXE3 FVC, PEF, and FEV1 Covid-19 mortality (Crespi et al., 2020) 
A 

rs151256885 ALOXE3 
(intronic) 

Blood clot, eosinophil percentage,  DVT, 
allergic and atopic diseases, Amlodipine and 

aspirin 
Covid-19 mortality (Crespi et al., 2020) 

A rs17264937 ACE2 Eosinophils Covid-19 infection (Lopera et al., 2020) 
A rs5980163 ACE2 Triglycerides Covid-19 infection (Lopera et al., 2020) 
A rs150965978 TMPRSS2 Plasma levels of CHIT1 protein Covid-19 infection (Lopera et al., 2020) 
A rs28401567 TMPRSS2 Thrombocytes Covid-19 infection (Lopera et al., 2020) 
B 

rs647800  

Thyroid-stimulating hormone, Hematocrit, 
Monocyte count, Hemoglobin concentration, 

Red blot cell count, Activated partial 
thromboplastin time, Total kolestrol, Legs-leg 

fat ratio (male), 

severe COVID-19 with 
respiratory failure (Moon et al., 2021) 

B rs11385942  Monocyte percentage of White cells, 
Monocyte count 

severe COVID-19 with 
respiratory failure (Moon et al., 2021) 

B rs3934992  Waist-hip ratio (adjucted for BMI) severe COVID-19 with 
respiratory failure (Moon et al., 2021) 

B rs134130  Celebellar vermal lobules VI VII severe COVID-19 with 
respiratory failure (Moon et al., 2021) 

B rs12610495 DPP9 Fibrotic idiopathic interstitial pnemonias severe COVID-19 with 
respiratory failure (Moon et al., 2021) 

 


