# CONDUCTOMETRIC STUDY OF COMPLEX FORMATION BETWEEN 2,3-PYRAZINEDICARBOXYLIC ACID AND SOME TRANSITION METAL IONS IN METHANOL

43

A.A.El-Khouly, E. A. Gomaa \* and S.E. Salem Chemistry Department , Faculty of Science, MansouraUniversity

33515 Mansoura, EGYPT

#### ABSTRACT

The. complexation reactions between CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> with 2,3-Pyrazinedicarboxylic acid in methanol (MeOH) at 313.15 K were studied by conductometric methods. The association constants, formation constants and Gibbs free energies were calculated from the conductometric titration curves. On drawing the relation between molar conductance and the ratio of metal to ligand concentrations, different lines were obtained indicating the formation of 1:1 and 2:1 (M:L) stoichiometric complexes. The formation constants and Gibbs free energies of different complexes in absolute Methanol at 313.15 K follow the order:)

 $K_{\ell}(2:1) > K_{\ell}(1:1)$  for (M:L) and  $\triangle G_{\ell}(2:1) > \triangle G_{\ell}(1:1)$  for (M:L)

**KEY WORDS:** Association constants; formation constants; Gibbs free energies of association; Gibbs free energies of complex formation.

#### RESUMO

A formação de complexos entre CuCl<sub>2</sub>, CoCl<sub>2</sub>, NiCl<sub>2</sub> e ácido 2,3-pirazinodicarboxílico em metanol á 313.15 K foi estudada usando métodos de condutividade. As constantes de associação e formação e as energias livres de Gibbs foram calculadas a partir de curvas de titulação condutimétrica. A relação entre a condutância molar e a proporção das concentrações metal-ligante levou a linhas retas indicando a formação de complexos estequiométricos (M:L) 1:1 e 2:1. As constantes de formação e as energias livres de Gibbs dos vários complexos em metanol à 313.15 K seguem a ordem:

 $K_f(2:1)>K_f(1:1)$  para (M:L) e  $\triangle G_f(2:1)> \triangle G_f(1:1)$  para (M:L)

PALAVRAS CHAVE: Constantes de associação. Constantes de formação, Energias livres de Gibbs de associação, energias livres de Gibbs para formação de complexos.

Corresponding author:e-mail:nouran-esam@hotmail.com (Dr. E.A. Gomaa)





### SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY

SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

Conductometric Study of Pyrazinedicarboxylic Acid Complexes

44

#### INTRODUCTION

The long range ion - ion interactions due to screened columbic forces are the most important features of electrolyte in solutions. These act together with shorter - ranged forces between the solvent molecules and between the solvent molecules and ion. Electrical conductivity (EC) is a measure measure of solvent to conduct electric current and depends on: concentration of the ions, ligand and temperature in solutions. Current is carried out by both cations and anions, but to different degree. The conductivity due to divalent cations is more than that of mono-valet cations, it is not true for anions. Metal cations with do noble gas electron configuration (alkali and alkaline earth) metal ions together with the inert molecular ions like tetraalkylammonium,-phosphonium,-arsonium, and trialkylsulfonium ions exhibit properties mainly determined by their charge and size [1]. Solvation of such cations in protic and polar solvents is due essentially to electrostatic ion-dipole and ion induced dipole interactions. Metal cations with filled d - orbitals, the d 10 cations, exhibit partially covalent character in their interactions; their properties depend on the charge and size and partially on their electro negativity. Cations with incomplete d- orbitals called dn-cations . With these cations protic and polar solvent molecules are strongly bound in complexes to a central cation through p-d orbital overlap and exchange only slowly with the bulk solvent. The formation of complexes becomes more important at high concentration of the complex ion and is likely to be more extensive in non-aqueous solvents, particularly in dipolar aprotic solvents, whereas the salvation of anions is weaker, leading to stronger complexation. Therefore conductivity study is valuable on using transition metal cations [2-7]. This work provides the analytical analyst and the biological analyst data can help him for deterring the concentration of CuCl2 CoCl2 and NiCl2 in blood and different solutions.

#### 2.3-Pyrazinedicarboxylic acid

Identification

Name

2,3-Pyrazinedicarboxylic acid

Synonyms

Pyrazine-2,3-dicarboxylic acid

Molecular Structure CN CO+

Molecular Formula

 $C_6H_4N_2O_4$ 

Molecular Weight

168.11

CAS Registry

89-01-0

Number

EINECS

201-875-3

**Properties** 

Melting point

185-188 °C

Water solubility

Soluble

VISIT OUR SITE: http://www.sbjchem.he.com.br

#### EXPERIMENTAL

procedure was as follows: -

The chemicals used 2, 3-pyrazine dicarboxylic acid and methanol were provided from Merck Co. and used directly without purification.

The experimental procedure to obtain the formation constant of complexes of 2,3-Pyrazinedicarboxylic acid with CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> by conductometric

A solution of metal chloride  $(1\times10^{-3} \text{ M})$  was placed in a titration cell, at a const temperature (313.15) K, and the conductance of the solution was measured. The ligand  $(1\times10^{-2} \text{ M})$  was transferred step-by-step to the titration cell using a precalibrated micropipette and the conductance of the solution was measured after each transfer. Addition of the ligand solution was continued until the total concentration of the (2, 3-Pyrazinedicarboxylic acid) was approximately four times higher than that of metal ions. The conductance of the solution was measured after each addition. The complex formation constant,  $K_6$  and the molar conductance of the complex, ML, were evaluated by computer fitting to the molar conductance mole ratio data.

#### RESULTS AND DISCUSSIOIN

- The stability of a transition metal complex with a polydentate chelate ligand depends on a range of factors including: number and type of the donor atoms present, the number and size of the chelate rings formed on complexation. In addition, the stability and selectivity of complexities strongly depend on the donor ability and dielectric constant of the solvent and shape and size of the solvent molecules.
- 2, 3-Pyrazinedicarboxylic acid is a polydentate ligand which tends to be completely coordinated to a metal ion. This reagent is soluble in water and soluble in most organic solvents
- The specific conductance values (Ks) of CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> in absolute (MeOH) were measured experimentally in absence and in the presence of ligand at 313.15 K.

The molar conductance ( $\bigwedge_m$ ) values were calculated [8] using equation (1):

$$\Lambda_m = \frac{(K_s - K_{solv})K_{cell} \times 1000}{C}$$
 (1)

Where  $K_s$  and  $K_{solv}$  are the specific conductance of the solution and the solvent, respectively;  $K_{cell}$  is the cell constant and C is the molar concentration of the  $CuCl_2$ ,  $CoCl_2$  and  $NiCl_2$  solutions.

- The limiting molar conductances ( $\land_0$ ) at infinite dilutions were estimated CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> in absolute methanol (MeOH) alone and in the presence of the ligand by extrapolating the relation between  $\land_m$  and  $C_m^{1/2}$  to zero concentration (Fig.1). By drawing the relation between molar conductance ( $\land_m$ ) and the molar ratio of metal to ligand (M/L) concentrations , different lines are obtained with sharp breaks indicating the formation of 1:1 and 2:1 (M:L) stoichiometric complexes (Fig.2).
- The experimental data of  $(\mbox{$\wedge$}_m)$  and  $(\mbox{$\wedge$}_o)$  were analyzed for the determination of association and formation constants for each type of the stoichiometric complexes.



Figure 1. The relation between molar conductance ( $\bigwedge_m$ ) and ( $\sqrt{C}$ ) of CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> in the presence of H<sub>2</sub>L in absolute methanol at 313.15 K.



Figure 2. The relation between molar conductance ( $\land_M$ ) and the molar ratio (M/L) of CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> in the presence of H<sub>2</sub>L in absolute methanol at 313.15 K indicating the formation of 1:1 and 2:1 (M:L) stoichiometric complexes.

- The association constants of CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> in the presence of ligand in absolute MeOH at 313.15 K for 1:2 asymmetric electrolytes were calculated [9, 10] by using equation (2):

$$K_{A} = \frac{\Lambda_{0}^{2} (\Lambda_{0} - \Lambda_{m})}{4C_{m}^{2} + \Lambda^{3} S(z)}$$
(2)

Where  $(\land_m, \land_0)$  are the molar and limiting molar conductance, respectively of  $CuCl_2$ ,  $CoCl_2$  and  $NiCl_2$ ,  $C_m$  is molar concentration of  $CuCl_2$ ,  $CoCl_2$  and  $NiCl_2$ , S(Z) is Fuoss-Shedlovsky factor, equal one for strong electrolytes [11]. The calculated association constants are shown in Table 1.

- The Gibbs free energies of association ( $\Delta G_A$ ) were calculated from the association constant [12,13] by applying equation (3):

$$\Delta G_A = -R T \ln K_A \qquad (3)$$

Where R is the gas constant (8.341 J) and T is the absolute temperature (313.15 K). The calculated Gibbs free energies were presented in Table 1.

Table 1. Association constants and Gibbs free energies of association for CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> in the presence of ligand in absolute MeOH at 313.15 K .

| С        | The state of the s | $\Lambda_{m}$ |          | ^       | ο <sup>2</sup> (Λ <sub>0</sub> -Λ, | n)       |          | 4C²+/\³ <sub>m</sub> |          |          | K <sub>A</sub> | *************************************** |          | ΔG <sub>A</sub><br>(k J/mol | )        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------|------------------------------------|----------|----------|----------------------|----------|----------|----------------|-----------------------------------------|----------|-----------------------------|----------|
|          | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Со            | Ni       | Cu      | Со                                 | Ni       | Cu       | Co                   | Ni       | Cu       | Co             | Ni                                      | Cu       | Co                          | Ni       |
| 0.001    | 44.2365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5347        | 190,1071 | 4153805 | 409922.3                           | 35726553 | 7828.18  | 3.614669             | 6670605  | 530,622  | 113404.6       | 5.199913                                | -16.3677 | -30.4001                    | -4.30623 |
| 0.00098  | 56.78107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.99206      | 199.8977 | 3698561 | 334627.8                           | 34109455 | 13820.86 | 3369 646             | 7987726  | 267.6072 | 99.30655       | 4.270234                                | -14,5997 | -12,0105                    | -3.79174 |
| 0.000962 | 76.43012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.64074      | 211.637  | 3146071 | 269453                             | 32170481 | 23366.25 | 18907.72             | 9479266  | 134.6416 | 14.25095       | 3.393774                                | -12.8056 | -6.93958                    | -3,19169 |
| 0.000943 | 91.21989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.77829      | 224.4413 | 2683089 | 218328.1                           | 30055600 | 33264.27 | 45799.27             | 11305967 | 80.6113  | 4.767064       | 2.658379                                | -11.4657 | -4.07922                    | -2.55378 |
| 0.000926 | 100.9503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.57271      | 234.2381 | 2378486 | 174717.9                           | 28437481 | 40763,85 | 82726,31             | 12852051 | 58.34791 | 2.112          | 2.21268                                 | -10.6214 | -1.95281                    | -2.07445 |

- The association free energies evaluated for CuCl2, CoCl2 and NiCl2 -ligand complexes are small and spontaneous indicating electrostatic attraction.
- The formation constants  $(K_f)$  for  $CuCl_2$ ,  $CoCl_2$  and  $NiCl_2$  complexes were calculated for each type of complexes (1:1) and (2:1) (M:L) by using equation (4) [14,15]:

$$K_f = \frac{\Lambda_M - \Lambda_{obs}}{(\Lambda_{obs} - \Lambda_{ML})[L]}$$
 (4)

Where  $\Lambda_m$  is the molar conductance of the CuCl2, CoCl2 and NiCl2 alone,  $\Lambda_{obs}$  is the molar conductance of solution during titration and  $\Lambda_{ML}$  is the molar conductance of the complex.

- The obtained values  $(K_f)$  for  $CuCl_2$ ,  $CoCl_2$  and  $NiCl_2$ -ligand stoichiometric complexes are presented in Table 2, 3. The Gibbs free energies of formation for each stoichiometric complexes were calculated by using the equation:

$$\Delta G_f = -R T \ln K_f \qquad (5)$$

- The calculated  $\Delta G_{\rm f}\,$  values are presented in Tables 2, 3.

### A.A. El-Khouly, E.A. Gomaa and S.E. Salem

Table 2. Formation constants and Gibbs free energies of formation for 1: 1  $(M/L) \ , \ CuCl_2, \ CoCl_2 \ and \ NiCl_2\text{-}H_2L \ in \ absolute$  MeOH at 313.15 K .

| [L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Nobs     |          | (1       | Nobe-NML)/ |          |          | (√u -√obs | ;)       |          | Kr       |          |          | ΔG <sub>f</sub><br>(k J/mol) | •        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|------------|----------|----------|-----------|----------|----------|----------|----------|----------|------------------------------|----------|
| Access of the Continue of the | Cu       | Со       | Ni       | Cu       | Co         | Ni       | Cu       | Co        | Ni       | Cu       | Co       | Ni       | Cu       | Co                           | Ni       |
| 0.001525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.5947 | 70.41492 | 279.0194 | 0.03436  | 0.026712   | 0.054091 | 381.4053 | 422.3387  | 170.9806 | 11100.35 | 15810.72 | 3161.006 | -24.3299 | -25.2538                     | -21.0491 |
| 0.001379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125.2748 | 67.60132 | 270.7058 | 0.023731 | 0.020429   | 0.037443 | 386,7252 | 425.0387  | 179.2942 | 16296.39 | 20805.3  | 4788.516 | -25.3328 | -25.9709                     | -22.1339 |
| 0.001228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.062  | 64.96128 | 261.3417 | 0.014727 | 0.013209   | 0.021837 | 391.9381 | 429,0942  | 186.6583 | 26613.65 | 32485.43 | 8639,321 | -26.614  | -27.1347                     | -23.6762 |
| 0.001071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114.3794 | 60.90576 | 252.1424 | 0,00676  | 0.007413   | 0.009195 | 397.6206 | 432.9314  | 197.8576 | 58918.62 | 58403.4  | 21517.08 | -28.6854 | -28.6669                     | -26.0587 |
| 0.000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.2562 | 57.08859 | 244.2408 | 0.000171 | 0.000831   | 0.000619 | 403,7419 | 498.9357  | 205.7592 | 2360436  | 528080.5 | 332449.7 | -36.3292 | -34.4181                     | -33.2094 |

Table 3. Formation constants and Gibbs free energies of formation for 2:1 (M/L) CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub>-H<sub>2</sub>L in absolute MeOH at 313.15 K.

| [L]      |          | $\Lambda_{ m obs}$ |          | (/       | / <sub>obs</sub> -/ <sub>////</sub> // | [L]      |          | (/\v-\_obs | )        |          | K        |          |          | $\Delta G_{\rm f}$ |          |
|----------|----------|--------------------|----------|----------|----------------------------------------|----------|----------|------------|----------|----------|----------|----------|----------|--------------------|----------|
|          |          |                    |          |          |                                        |          |          |            |          |          |          |          |          | (k J/mol           | )        |
|          | Cu       | Co                 | Ní       | Cu       | Co                                     | Ni       | Cu       | Co         | Ni       | Cu       | Co       | Ni       | Cu       | Co                 | Ni       |
| ).002188 | 153.0003 | 77.87709           | 311.6939 | 0.03931  | 0.016292                               | 0.05883  | 358,9997 | 412.1221   | 138,1061 | 9132.511 | 26295.58 | 2347.591 | -23.8262 | -26.4813           | -20.2719 |
| 1.002063 | 148.7928 | 76.53127           | 307.0205 | 0.028399 | 0.01259                                | 0.045439 | 363,2072 | 413.4687   | 142.9795 | 12789.27 | 32841.27 | 3146.609 | -24.6990 | -27.1632           | -21.0371 |
| ),001935 | 144,3875 | 74.42244           | 299.5928 | 0.018111 | 0.807727                               | 0.025244 | 367.6125 | 415,5776   | 150.4072 | 20297.51 | 53780.36 | 5325.254 | -25.9063 | -28.4515           | -22.4114 |
| ).001803 | 140,1737 | 72.46812           | 293.5041 | 0.009276 | 0.003675                               | 0.015335 | 371.8253 | 417.5319   | 156.4959 | 40066.58 | 113684.8 | 10205.02 | -27,6839 | -30.4048           | -24.1103 |
| 1.001667 | 135.4038 |                    | 286.2205 | 0.000623 |                                        | 0.002834 | 376,5962 |            | 163.7795 | 604488.3 |          | 80512.97 | -34.7711 |                    | -29.5054 |

- The association free energies evaluated for CuCl2, CoCl2 and NiCl2 -1 igand complexes indicating a spontaneous electrostatic attraction.

#### Conductometric Study of Pyrazinedicarboxylic Acid Complexes

50

- The formation constants and Gibbs free energies of different complexes in absolute methanol at 313.15 K follow the order:  $K_f(2:1) \rightarrow K_f(1:1)$  for (M:L), and  $\Delta G_f(2:1) \rightarrow \Delta G_f(1:1)$  for (M:L).

#### CONCLUSION

This work concentrated on the behavior of CuCl<sub>2</sub>, CoCl<sub>2</sub> and NiCl<sub>2</sub> with the ligand conductometrically. The main target is to discuss the complexation between the metal and ligand for evaluating different concentrations from the metal ion in different solutions

#### REFERENCES

- 1. Trevor M.Letcher,"Development and Aplications in Solubility". The Royal Society of Chemistry", Cambridge, 2007.
- Robinson, R.A and Stokes, R.H., Electrolyte Solutions", Butterworth & Co. (Publishers) Ltd., Newton Abbot, Devon 2002..
- 3. Barthel, J.M.G., Krienke, H., Kunz, W.,"Physical Chemistry of Electrolyte Solutions, Springer-Verlag, Darmstadt, New York 1998.
- 4. Bohm, L.L. and Schulz, G.V., Ber. Bundenges. Phys. Chem., 73,260 (1969)
- Hofelmann, K, Jagur Grodzinski, J. E. Land Szware, M., J. Am. Chem. Soc., 91, 4045 (9169).
- 6. Justice, J.C., Electrochim. Acta, 16,761 (1971).
- 7. Zwanzig R., J. Chem. Phys. 38, 1603 (1963).
- 8. Gryzybkowski, W. and Pastewski, R. Electrochimica Acta 25, 279 (1980).
- 9. El-Shishtawi, N.A, Hamada, M.A. and Gomaa, E.A. *J. Chem. Eng. Data* 55, 5422 (2010).
- 10. Hamada, M.A., El-Shishtawi, N.A. and Gomaa, E.A., South. Braz. J.Chem. 17, 33 (2009).
- 11. Gomaa, E.A. Thermochimica Acta 120, 183 (1987).
- 12. Gomaa, E.A. Thermochimica Acta 128, 99 (1988).
- 13. El-Dousski, F.F. Journal of Molecular Liquids 142, 53 (2008).
- 14. Takeda, Y. (1983) Bull. Chem. Soc. Jpn, 56, 3600 (1983).
- 15. Rahmi-Nasrabadi, M., Ahmedi, F., Pourmor-tazari, S.M., Ganjal, M.R. and Alizadeh, K. *Journal of Molecular Liquids* 144, 97 (2009).

### SYNTHESIS OF NEW SPIRO- HETEROCYCLES CONTAINING DIHYDROTETRAZINE MOIETY

51

#### Hany M. M. Dalloul

Department of Chemistry, Faculty of Applied Science, Al-Aqsa University of Gaza P.O. Box 4051, Gaza 76888, PALESTINE E-mail: hmdalloul60@yahoo.com

#### **ABSTRACT**

The reaction of nitrilimines with hydrazones of alkanones and cycloalkanones led to the formation of acyclic electrophilic addition products, which upon treatment with C/S/Zn cyclized to 1,6-dihydro-1,2,4,5-tetrazine derivatives. The structures of the synthesized compounds have been established by their elemental analyses and spectroscopical data.

#### **KEYWORDS**

Nitrilimines, Hydrazones, Cyclization, Synthesis, 1,6-dihydro-1,2,4,5-tetrazine

#### RESUMO

A reação de nitriliminas com hidrazonas de alcanonas e cicloalcanonas levou à formação de produtos acíclicos de adição eletrofilica. Depóis de tratamento com C/S/Zn eles levaram a derivados cíclicos de 1,6-dihidro-1,2,4,5-tetrazinas.As estruturas dos compostos sintetizados foram comprovadas com análise elementar e dados especroscópicos.

#### PALAVRAS CHAVE

Nitriliminas, Hidrazonas, Ciclização, Síntese de 1,6-dihidro-1,2.4,5-tetrazina



VISIT OUR SITE: http://www.sbjchem.he.com.br

52

### GRAPHICAL ABSTRACT

# Synthesis of New Spiro-Heterocycles Containing Dihydrotetrazine moiety

### Hany M. Dalloul Alaqsa University of Gaza, Palestine

V, Ar = Ph; VI, Ar = PhNH; VII, Ar = 2-Furyl; VIII, Ar = 2-Tienyl; IX, Ar = 2-Naphthyl

Synthesis of New Spiro-Heterocycles Containing Dihydrotetrazine

53

#### 1. INTRODUCTION

Previous publications, showed that the simple hydrazones derived from aliphatic aldehydes and ketones react with nitrilimines at ambient temperature to give acyclic addition products, which undergo oxidative cyclization upon refluxing with active charcoal to yield the corresponding 1,6-dihydro-stetrazines [1] or amidrazones [2,3]. On the other hand, methyl hydrazones of alkanals and alkanones furnish 1,2,3,4-tetrahydro-s-tetrazines [3,4].

Recently, we found that nitrilimines react with 1-methyl, 1-phenyl, 1-acetyl, 1-formyl and 1-ethoxycarbonyl-1-methylhydrazines at room temperature afforded acyclic electrophilic addition products, which cyclized intramolecularly to the corresponding 1,2,3,4-tetrahydro-1,2,4,5-tetrazines by heating them with activated charcoal or lithium hydride in refluxing benzene or toluene [5.]

Quite recently, we described the synthesis of 1,2,3,4-tetrahydro-1,2,4,5-tetrazin-3-ones by the reaction of acetylhydrazone pyridinium chloride (Girard-reagent P) with different nitrilimines [6]. Several methods have been reported for the synthesis of tetrazine derivatives, and the most frequently used method for the preparation of 1,2,3,4-tetrahydro-1,2,4,5-tetrazines is the cyclization of alkylformazanes by heating or base treatment [7].

In the present study, the synthesis of a series of new substituted 1,2,4,5-tetrazines 5-9 were performed (Scheme 1) and their structures were characterized by <sup>1</sup>H NMR <sup>13</sup>C NMR, IR spectroscopy and elemental analysis.

#### 2. RESULTS AND DISCUSSION

The formazans (acyclic adducts) III were synthesized via reaction of nitrilimines I with alkanones and cycloalkanone hydrazones II as shown in Scheme 1. Attempts to cyclize the acyclic adducts III (Ar = Me or OMe) by heating in tetrahydrofuran or ethanol were unsuccessful. However, treatment of solution of later adducts III (Ar = Me or OMe) with palladium-carbon brought about oxidative cyclization to the 1,6-dihydro-1,2,4,5-tetrazines [1].

On the other hand, cyclization of acyclic compounds III (Ar = Ph, PhNH, 2-furyl, 2-theinyl, 2-naphthyl) using active charcoal in refluxing toluene give complicated mixture of products as indicated by TLC, among which amidrazones X were separated, rather than the expected 1,6-dihydro-1,2,4,5-tetrazines [2,3] (Figure 1).

Treatment of solution of formazans III (Ar = Ph, PhNH, 2-furyl, 2-theinyl, 2-naphthyl) with new catalyst containing (C/S/Zn), developed in our laboratory by our colleague of physical chemistry, at room temperature in benzene or toluene give directly 1,6-dihydro-1,2,4,5-tetrazines V-IX (Figure 1) in excellent yields. (Table 1). It is suggested that the conversion of acyclic compounds III into s-tetrazines V-IX involves the non isolable intermediate formation of the tetrahydro-s-tetrazines IV (Figure 1).

#### 2.1 Spectral data analysis

The assignment of structures of compounds V-IX is based on their analytical and spectroscopic data. Physical properties and microanalysis are presented in Table 1. These compounds gave satisfactory combustion analysis for the proposed structures which are confirmed on the basis of their spectroscopic data.

V, Ar = Ph; VI, Ar = PhNH; VII, Ar = 2-Furyl; VIII, Ar = 2-Tienyl; IX, Ar = 2-Naphthyl Ar' =  $4-X-C_aH_a$ -

Figure 1. Synthetic pathway for the preparation of compounds V-IX.

In the IR spectra of compounds V-IX, showed the disappearance of NH signals and the C=O bond stretching of the carbonyl group at C-3 occurs at higher frequency (1665-1655 cm $^{-1}$ ) than it dose in the acyclic precursors III (1650-1635 cm $^{-1}$ ). This implies that conjugation of this exocyclic group with the hetero-ring  $\pi$ -system is decreased as a consequence of homoaromaticity and the slightly non-planar arrangement of the N-2, N-4 and C-3 plane with the substituents at C-3 [8-9] Compounds V-IX revealed strong absorption at about 1620-1600 cm $^{-1}$  assigned to C=N bond stretching.

<sup>1</sup>H and <sup>13</sup>C NMR spectra of obtained compounds V-IX provide strong evidence in support of the proposed structures. Their <sup>1</sup>H NMR spectra showed the disappearance of 2NH signals, in addition to aromatic protons signals, a characteristic signal due to amide NH proton for compounds VI resonating as singlet at 9.10-8.80 ppm. For compounds Va,VIa,VIf,IXa tow signals for the

methyl groups (2CH<sub>3</sub>) protons appeared as singlet at 1.41-1.34 ppm and the signals of the cycloalkane protons in other compounds appeared in the range of 2.53-1.51 ppm.

The dihydrotetrazines V-IX exhibited a characteristic <sup>13</sup>C NMR signal at 68-87 ppm assigned to the C-6. This is similar to reported values of quaternary or spiro carbon flanked by tow nitrogens in six-membered heterocycles [2,3]. In the acyclic analogues III, this carbon resonates at 140-155 ppm [2,3]. This provides a strong evidence in support of cyclic structure of compounds V-IX. The <sup>1</sup>H and <sup>13</sup>C NMR spectral data of the synthesized compounds are presented in the experimental part.

#### 3. EXPERIMENTAL SECTION

#### 3.1. Reagents and Instrumentation

Triethylamine (TEA), tetrahydrofuran (THF), acetone, cyclohexanone, 4-methylcyclohexanone, 4-t-butylcyclohexanone, cyclopentanone, cycloheptanone, cyclooctanone and toluene were purchased from Avocado Chemical Company, England, and used as purchased. All melting points were determined on a Stuart Electrothermal Apparatus and are uncorrected.

The IR spectra were obtained by using Perkin-Elmer 737 infrared spectro-photometer in potassium bromide pellets. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker spectrometer (400.13 MHz) at room temperature in CDCl<sub>3</sub> and DMSO-d<sub>6</sub>, using tetramethylsilane (TMS) as an internal reference. All chemical shifts were reported as δ values in parts per million (ppm) downfield from internal TMS.

Electron impact (EI) mass spectra were measured on Shimadzu GCMS-QP1000 EX Mass spectrometers at 70 eV. Elemental analysis are performed at Cairo University, Egypt, and the results agreed with the calculated values within experimental errors. Nitrilimines 1 and hydrazones 2 used in this study, were prepared according to described procedures [1,10,11].

#### 3.2. Synthesis of 1,6-dihydro-s-tetrazines V-IX

#### 3.2.1 Reaction of nitrilimines I with hydrazones II

To a stirred mixture of the appropriate hydrazonoyl halide [nitrilimines I precursors] (0.01 mol) and hydrazones II (0.02 mol) in dry THF (100 mL), triethylamine (5 mL, 0.05 mol) in THF (20 mL) was dropwise added at -5 to 0 °C and the reaction mixture was controlled by TLC. The reaction temperature was allowed to rise slowly to room temperature and stirring was continued until the starting substrates were completely consumed (4-6 hours). The precipitated triethylammonium chloride salt was filtered off, the solvent was removed under reduced pressure. The residue was washed with water (3x50 mL), then triturated with ethanol (10 mL), the crude solid product was collected and recrystallized from aqueous ethanol to give the desired compounds III.

### Synthesis of New Spiro-Heterocycles Containing Dihydrotetrazine

Table 1. Physical data and elemental analysis for compounds (V-IX).

| Comp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molecular Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yield      | mp (°C)                                                          | ***              | %) Calculat        |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------|------------------|--------------------|---------|
| <del>а Г</del> алиянт наменя прибот росе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)        | en egg skinner somher som en | С                | H                  | N       |
| Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>17</sub> H <sub>15</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82         | 173-5                                                            | 62.48            | 4.63               | 17.14   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (326.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (62.70)          | (4.50)             | (17.25) |
| Vb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>19</sub> H <sub>17</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86         | 166-8                                                            | 64.68            | 4.86               | 15.88   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (352.83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (64.45)          | (4.75)             | (16.05) |
| Vc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>20</sub> H <sub>19</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89         | 184-6                                                            | 65.48            | 5.22               | 15.27   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (366.85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (65.75)          | (5.35)             | (15.10) |
| Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C21H21CIN4O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91         | 167-9                                                            | 66.22            | 5.56               | 14.71   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (380.88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (61.95)          | (5.70)             | (14.60) |
| Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>22</sub> H <sub>23</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87         | 175-7                                                            | 66.91            | 5.87               | 14.19   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (394.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (67.10)          | (5.00)             | (14.30) |
| Vla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>17</sub> H <sub>16</sub> CIN <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81         | 182-4                                                            | 59.74            | 4.72               | 20.49   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (341.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (60.00)          | (7.65)             | 20.30)  |
| Vic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C20H20CIN5O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86         | 191-3                                                            | 62.91            | `5.28 <sup>´</sup> | 18.43   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (381.87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (63.15)          | (5.35)             | (18.60) |
| Vle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C22H24CIN5O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84         | 187-9                                                            | 64.46            | `5.90 <sup>′</sup> | `17.08  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (409.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (64.20)          | (6.05)             | (16.95) |
| VIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>17</sub> H <sub>17</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88         | 194-6                                                            | 66.43            | `5.58 <sup>′</sup> | `22.79  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (307.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (66.65)          | (5.40)             | (22.90) |
| Vig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>19</sub> H <sub>19</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92         | 201-3                                                            | 68.45            | 5.74               | 21.01   |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (333.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (68.25)          | (5.90)             | (20.85) |
| Vin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>20</sub> H <sub>21</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90         | 181-3                                                            | 69.14            | 6.09               | 20.16   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (347.42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (68.90)          | (5.95)             | (20.30) |
| Vii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>21</sub> H <sub>32</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87         | 196-8                                                            | 69.78            | 6.41               | 19.38   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (361.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (69.55)          | (6.25)             | (19.55) |
| VIJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>24</sub> H <sub>29</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83         | 167-9                                                            | 71.44            | 7.24               | 17.36   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (403.53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (71.15)          | (7.35)             | (17.20) |
| VIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>21</sub> H <sub>23</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94         | 177-9                                                            | 69.78            | 6.41               | 19.38   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (361.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (69.95)          | (6.55)             | (19.25) |
| VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>22</sub> H <sub>25</sub> N <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91         | 183-5                                                            | 70.38            | 6.71               | 18.65   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (375.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (70.10)          | (6.55)             | (18.80) |
| VIIb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>17</sub> H <sub>15</sub> CIN <sub>4</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93         | 153-5                                                            | 59.57            | 4.41               | 16.34   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (342.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                  | (59.80)          | (4.30)             | (16.20) |
| VIIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>18</sub> H <sub>17</sub> CIN <sub>4</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90         | 148-50                                                           | 60.59            | 4.80               | 15.70   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (356.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -          |                                                                  | (60.35)          | (4.95)             | (15.85) |
| VIIID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>17</sub> H <sub>15</sub> ClN <sub>4</sub> O <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85         | 163-5                                                            | 56.90            | 4.21               | 15.61   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (358.85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -47 147    | "                                                                | (57.15)          | (4.40)             | (15.50) |
| VIIId                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C19H19CIN4O2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89         | 146-8                                                            | 58.98            | 4.95               | 14.48   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (386.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w)*        | n milde politi                                                   | (59.25)          | (5.10)             | (14.35) |
| IXa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G <sub>21</sub> H <sub>17</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83         | 190-2                                                            | 66.93            | 4.55               | 14.87   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (376.85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ·Jr      | A                                                                | (67.20)          | (4.40)             | (15.00) |
| IXb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91         | 176-8                                                            | 68.57            | 4.75               | 13.91   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (402.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₩ 1        | is in one does                                                   | (68.80)          | (4.65)             | (14.05) |
| IXc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>24</sub> H <sub>21</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87         | 189-91                                                           | 69.14            | 5.08               | 13.44   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (416.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × +        | a 100 500 50% \$                                                 | (68.90)          | 3.00<br>(4.95)     | (13.60) |
| IXd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>25</sub> H <sub>23</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84         | 168-70                                                           | 69.68            | 5.38               | 13.00   |
| N-E AD-MINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (430.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>2</b> T | 1124-14                                                          | (69.90)          | 5.50)<br>(5.50)    | (12.85) |
| lXe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>28</sub> H <sub>25</sub> CIN <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89         | 184-6                                                            | 70.18            | 5.66               | 12.59   |
| " T. P. GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (444.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W.         | ( 1.4-1)                                                         | (69.95)          | 5.66<br>(5.80)     |         |
| on the state of th | And the second s |            |                                                                  | warehousenseemen |                    | (12.45) |

#### 3.2.2 Cyclization of compounds (III):

Acyclic compounds III (0.005 mol) and C/S/Zn (0.1 w/w%) in benzene or toluene were stirred at room temperature for 1-2 hours and monitored by TLC. The reaction mixture was cooled, then filtered and the solvent was minimized and petroleum ether (bp. 40-60 °C) was slowly added to effect complete crystallization of the desired cyclic compounds V.

The following compounds were prepared using this method:

3-Benzoyl-1-(4-chlorophenyl)-6,6-dimethyl-1,6-dihydro-1,2,4,5-tetra-zine (Va): <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 7.92-7.03 (m, 9H, Ar-CH), 1.39 (s, 3H, CH<sub>3</sub>), 1.37 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 187.4 (C=O), 171.6 (COOH), 143.7 (C=N), 144.3-126.6 (Ar-C), 68.6 (quaternary carbon), 22.5 (CH<sub>3</sub>). IR (KBr) *v*/cm<sup>-1</sup>: 1660 (C=O), 159.2 (C=N).

8-Benzoyl-6-(4-chlorophenyl)-6,7,9,10-tetraazaspiro[4.5]dec-7,9-diene (Vb): <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 8.02-7.11 (m, 9H, Ar-CH), 1.90-1.68 (m, 8H, cyclopentane protons). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 185.7 (C=O), 143.9 (C=N), 144.9-126.1 (Ar-C), 86.7 (spiro carbon), 32.1, 23.7 (cyclopentane carbons). IR (KBr) v/cm<sup>-1</sup>: 1655 (C=O), 1594 (C=N).

3-Benzoyl-1-(4-chlorophenyl)-1,2,4,5-tetraazaspiro[5.5]undec-2,4-diene (Vc):  $^{1}$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 7.97-7.06 (m, 9H, Ar-CH), 1.86-1.66 (m, 10H, cyclohexane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 185.5 (C=O), 143.9 (C=N), 144.4-126.2 (Ar-C), 84.3 (spiro carbon), 32.1, 24.7, 23.4 (cyclohexane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1655 (C=O), 1593 (C=N).

3-Benzoyl-1-(4-chlorophenyl)-1,2,4,5-tetraazaspiro[5.6]dodec-2,4-diene (Vd):  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$ : 8.27-7.00 (m, 9H, Ar-CH), 2.53-1.56 (m, 12H, cycloheptane protons).  $^{13}$ C NMR (CDCl<sub>3</sub>)  $\delta$ : 185.6 (C=O), 143.4 (C=N), 142.7-119.6 (Ar-C), 87.5 (spiro carbon), 39.5, 28.7, 22.3 (cycloheptane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1660 (C=O), 1597 (C=N).

3-Benzoyl-1-(4-chlorophenyl)-1,2,4,5-tetraazaspiro[5.7]tridec-2,4-diene (Ve): <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 7.99-6.96 (m, 9H, Ar-CH), 2.46-1.36 (m, 14H, cyclooctane protons). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 185.6 (C=O), 143.9 (C=N), 145.0-114.8 (Ar-C), 86.6 (spiro carbon), 34.4, 27.2, 25.2, 23.1 (cyclooctane carbons). IR (KBr) v/cm<sup>-1</sup>: 1650 (C=O), 1594 (C=N).

1-(4-Chlorophenyl)-3-phenylaminocarbonyl-6,6-dimethyl-1,6-dihydro-1,2,4,5-tetrazine (Via):  $^{1}$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 9.12 (s, 1H, NH), 7.61-7.18 (m, 10H, Ar-CH), 1.41 (s, 3H, CH<sub>3</sub>), 1.38 (s, 3H, CH<sub>3</sub>).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 159.2 (C=O amide), 136.7 (C=N), 142.4-126.6 (Ar-C), 68.7 (spiro carbon), 22.5 (CH<sub>3</sub>). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1650 (C=O), 1594 (C=N).

**1-(4-Chlorophenyl)-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro[5.5]-undec-2,4-diene (VIc):**  $^{1}$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 9.10 (s, 1H, NH), 7.63-7.20 (m, 10H, Ar-CH), 1.86-1.60 (m, 10H, cyclohexane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 159.3 (C=O amide), 136.9 (C=N), 141.9-125.8 (Ar-C), 84.8 (spiro carbon), 31.4, 25.7, 22.6 (cyclohexane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1655 (C=O), 1598 (C=N).

1-(4-Chlorophenyl)-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro[5.7]-tridec-2,4-diene (Vie): <sup>1</sup>H NMR (DMSO-d<sub>6</sub>) δ: 9.12 (s, 1H, NH), 7.60-7.20 (m, 14H, Ar-CH), 2.53-1.44 (m, 10H, cyclooctane protons). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>) δ: 159.4 (C=O amide), 136.8 (C=N), 141.7-126.0 (Ar-C), 86.5 (spiro carbon), 34.5,

30.7, 28.4, 23.2 (cyclooctane carbons). IR (KBr) v/cm<sup>-1</sup>: 1655 (C=O), 1596 (C=N).

1-Phenyl-3-phenylaminocarbonyl-6,6-dimethyl-1,6-dihydro-1,2,4,5-tetrazine (VIf):  $^{1}$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 9.00 (s, 1H, NH), 7.63-7.23 (m, 10H, Ar-CH), 1.37 (s, 3H, CH<sub>3</sub>), 1.34 (s, 3H, CH<sub>3</sub>).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 158.9 (C=O amide), 136.7 (C=N), 143.7-124.4 (Ar-C), 68.7 (spiro carbon), 22.7 (CH<sub>3</sub>). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1650 (C=O), 1598 (C=N).

6-Phenyl-8-phenylaminocarbonyl-6,7,9,10-tetraazaspiro[4.5]dec-7,9-diene (Vig): <sup>1</sup>H NMR (DMSO-d<sub>6</sub>) δ: 9.10 (s, 1H, NH), 7.60-7.19 (m, 10H, Ar-CH), 1.95-1.70 (m, 8H, cyclopentane protons). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>) δ: 158.8 (C=O), 136.4 (C=N), 142.3-126.2 (Ar-C), 86.6 (spiro carbon), 32.3, 23.4 (cyclopentane carbons). IR (KBr) ν/cm<sup>-1</sup>: 1655 (C=O), 1596 (C=N).

1-Phenyl-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro[5.5]undec-2,4-diene (VIh):  $^1$ H NMR (DMSO-d<sub>6</sub>) δ: 9.00 (s, 1H, NH), 7.58-7.16 (m, 10H, Ar-CH), 1.85-1.63 (m, 10H, cyclohexane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>) δ: 158.5 (C=O amide), 136.7 (C=N), 141.7-124.6 (Ar-C), 80.6 (spiro carbon), 32.0, 24.8, 23.1 (cyclohexane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1655 (C=O), 1595 (C=N).

9-Methyl-1-phenyl-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro[5.5]-undec-2,4-diene (Vii): <sup>1</sup>H NMR (DMSO-d<sub>6</sub>) δ: 9.05 (s, 1H, NH), 7.62-7.17 (m, 10H, Ar-CH), 2.05-1.22 (m, 9H, cyclohexane protons), 0.94 (s, 3H, CH<sub>3</sub> at cyclohexane). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>) δ: 158.6 (C=O amide), 136.6 (C=N), 141.5-125.0 (Ar-C), 84.5 (spiro carbon), 33.8, 31.4, 28.4, 22.7 (methyl-cyclohexane carbons). IR (KBr) v/cm<sup>-1</sup>: 1655 (C=O), 1598 (C=N).

9-tert-Butyl-1-phenyl-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro-[5.5]undec-2,4-diene (VIj):  $^1$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 9.10 (s, 1H, NH), 7.66-7.21 (m, 10H, Ar-CH), 2.05-1.10 (m, 9H, cyclohexane protons), 0.88 (s, 9H, tert-butyl group) .  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 158.7 (C=O amide), 136.5 (C=N), 141.6-124.3 (Ar-C), 84.9 (spiro carbon), 47.1, 35.8, 32.4, 27.6, 24.1 (tert-butyl-cyclohexane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1650 (C=O), 1594 (C=N).

1-Phenyl-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro[5.6]dodec-2,4-diene (VIk):  $^1$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 8.95 (s, 1H, NH), 7.65-7.20 (m, 10H, Ar-CH), 2.45-1.62 (m, 12H, cycloheptane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 158.5 (C=O amide), 136.7 (C=N), 141.7-124.6 (Ar-C), 87.7 (spiro carbon), 39.6, 28.4, 22.3 (cycloheptane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1655 (C=O), 1596 (C=N).

1-Phenyl-3-phenylaminocarbonyl-1,2,4,5-tetraazaspiro[5.7]tridec-2,4-diene (VII):  $^1$ H NMR (DMSO-d<sub>6</sub>)  $\delta$ : 9.10 (s, 1H, NH), 7.60-7.20 (m, 10H, Ar-CH), 2.52-1.43 (m, 14H, cyclooctane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 158.4 (C=O amide), 136.5 (C=N), 139.7-126.6 (Ar-C), 86.9 (spiro carbon), 34.8, 31.1, 28.7, 23.2 (cyclooctane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1655 (C=O), 1593 (C=N).

6-(4-Chlorophenyl)-8-(2-furoyl)-6,7,9,10-tetraazaspiro[4.5]dec-7,9-diene (VIIb):  $^1$ H NMR (CDCl<sub>3</sub>) δ: 7.87-7.26 (m, 7H, Ar-CH), 1.95-1.70 (m, 8H, cyclopentane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>) δ: 174.7 (C=O), 143.3 (C=N), 136.8-115.9 (Ar-C), 86.6 (spiro carbon), 34.5 32.2, 23.2 (cyclopentane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1665 (C=O), 1594 (C=N).

1-(4-Chlorophenyl)-3-(2-furoyl)-1,2,4,5-tetraazaspiro[5.5]undec-2,4-diene (VIIc): <sup>1</sup>H NMR (CDCl<sub>3</sub>) ö: 8.26-7.21 (m, 7H, Ar-CH), 1.84-1.61 (m, 10H, cyclohexane protons). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>) ö: 174.6 (C=O), 143.1 (C=N), 136.7-

#### H. M. Dalloul

59

116.1 (Ar-C), 80.6 (spiro carbon), 32.6, 24.8, 23.3 (cyclohexane carbons). IR (KBr) v/cm<sup>-1</sup>: 1660 (C=O), 1595 (C=N).

6-(4-Chlorophenyl)-8-(2-thenoyl)-6,7,9,10-tetraazaspiro[4.5]dec-7,9-diene (VIIIb): <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 8.23-7.18 (m, 7H, Ar-CH), 1.92-1.67 (m, 8H, cyclopentane protons). <sup>13</sup>C NMR (DMSO-d<sub>6</sub>) δ: 174.6 (C=O), 143.4 (C=N), 136.7-115.0 (Ar-C), 86.8 (spiro carbon), 32.4 23.7 (cyclopentane carbons). IR (KBr) ν/cm<sup>-1</sup>: 1665 (C=O), 1598 (C=N).

1-(4-Chlorophenyl)-3-(2-thenoyl)-1,2,4,5-tetraazaspiro[5.6]dodec-2,4-diene (VIIId):  $^{1}$ H NMR (CDCl<sub>3</sub>) δ: 8.21-7.16 (m, 7H, Ar-CH), 2.42-1.60 (m, 12H, cycloheptane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>) δ: 174.6 (C=O), 143.2 (C=N), 136.6-114.6 (Ar-C), 87.5 (spiro carbon), 39.5 28.2, 22.5 (cycloheptane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1665 (C=O), 1596 (C=N).

1-(4-Chlorophenyl)-6,6-dimethyl-3-(2-naphthoyl)-1,6-dihydro-1,2,4,5-tetrazine (IXa):  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$ : 8.59-7.16 (m, 11H, Ar-CH), 1.41 (s, 3H, CH<sub>3</sub>), 1.39 (s, 3H, CH<sub>3</sub>).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 187.5 (C=O), 135.5 (C=N), 144.2-125.9 (Ar-C), 68.6 (spiro carbon), 22.6 (CH<sub>3</sub>). IR (KBr) v/cm<sup>-1</sup>: 1645 (C=O), 1595 (C=N).

6-(4-Chlorophenyl)-8-(2-napthoyl)-6,7,9,10-tetraazaspiro[4.5]dec-7,9-diene (IXb):  $^{1}$ H NMR (CDCl<sub>3</sub>)  $\delta$ : 8.57-7.12 (m, 11H, Ar-CH), 2.10-1.67 (m, 8H, cyclopentane protons).  $^{13}$ C NMR (DMSO-d<sub>6</sub>)  $\delta$ : 187.4 (C=O), 135.4 (C=N), 144.0-115.3 (Ar-C), 80.7 (spiro carbon), 31.9, 23.5 (cyclopentane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1646 (C=O), 1598 (C=N).

1-(4-Chlorophenyl)-3-(2-naphthoyl)-1,2,4,5-tetraazaspiro[5.5]undec-2,4-diene (IXc): <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 8.56-7.13 (m, 11H, Ar-CH), 2.15-1.58 (m, 10H, cyclohexane protons). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 187.5 (C=O), 135.5 (C=N), 143.9-126.0 (Ar-C), 70.9 (spiro carbon), 30.8, 25.8, 22.6 (cyclohexane carbons). IR (KBr) ν/cm<sup>-1</sup>: 1648 (C=O), 1597 (C=N).

1-(4-Chlorophenyl)-3-(2-naphthoyl)-1,2,4,5-tetraazaspiro[5.6]dodec-2,4-diene (IXd): <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 8.58-7.24 (m, 11H, Ar-CH), 2.35-1.65 (m, 12H, cycloheptane protons). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 187.1 (C=O), 135.6 (C=N), 144.5-119.6 (Ar-C), 85.3 (spiro carbon), 39.4, 31.2, 28.3, 22.6 (cycloheptane carbons). IR (KBr) ν/cm<sup>-1</sup>: 1645 (C=O), 1593 (C=N).

1-(4-Chlorophenyl)-3-(2-naphthoyl)-1,2,4,5-tetraazaspiro[5.7]tridec-2,4-diene (IXe):  $^1$ H NMR (CDCl<sub>3</sub>)  $\delta$ : 8.56-6.98 (m, 11H, Ar-CH), 2.48-1.37 (m, 14H, cyclooctane protons).  $^{13}$ C NMR (CDCl<sub>3</sub>)  $\delta$ : 187.2 (C=O), 135.7 (C=N), 142.1-114.7 (Ar-C), 84.9 (spiro carbon), 34.6, 30.8, 28.7, 23.4 (cyclooctane carbons). IR (KBr)  $\nu$ /cm<sup>-1</sup>: 1645 (C=O), 1594 (C=N).

Synthesis of New Spiro-Heterocycles Containing Dihydrotetrazine

#### 4. CONCLUSION

60

In conclusion, the results demonstrate that the nitrilimines react with hydrazone of aliphatic alkanones and cycloalkanone to give an acyclic addition product, which upon treatment with new catalyst (C/S/Zn) yielded the spiro heterocyclic compounds containing tetrazine moiety.

#### 5. REFERENCES

- [1] A. Q. Hussein, J. Chem. Res. (S), 1996, 174-5; J. Chem. Res. (M), 1996, 979-94.
- [2] E. A. El-Sawi, A. M. Awadallah, A. R. Ferwanah, H. M. Dalloul, Asian J. Chem. 2002, 14, 1225-9.
- [3] H. M. Dalloul, P. H. Boyle, Heterocycl. Commun. 2003, 9, 507-14.
- [4] H. M. Dalloul, H. M. Abu-Shawish, Org. Commun. 2008, 1, 1-8.
- [5] H. M. Dalloul, Tetrahedron 2009, 65, 8722-6.
- [6] H. M. Dalloul, South. Braz. J. Chem. 2010, 18, 19-27.
- [7] G. McConnachie, F. A. Neugebauer, Tetrahedron, 1975, 31, 555-60.
- [8] A. D. Counotte-Potman, H. C. Van Der Plas, B. Van Veldhuizen, J. Org. Chem. 1981, 46, 2138-
- [9] C. H. Stam, A. D. Counotte-Potman, H. C. Van Der Plas, J. Org. Chem. 1982, 47, 2856-
- [10] H. M. Dalloul, Ph.D. Thesis, Faculty of Applied Science, Alaqsa University, 2002.
- [11] A. S. Shawali, H. M. Hassaneen, A. A. Fahmi, N. M. Abunada, Phosphorous, Sulfur, and Silicon, 1990, 53, 259-.

VISIT OUR SITE: http://www.sbjchem.he.com.br

### SYNTHESIS AND ANTIMICROBIAL PROFILE OF SOME NEWER HETEROCYCLES BEARING THIAZOLE MOIETY

Rajul Gupta<sup>1</sup>\*, Neeraj Kumar Fuloria<sup>2</sup>, Shivkanya Fuloria<sup>2</sup>

61

<sup>1</sup>Department of Pharmacy, CMJ University
Modrina Mansion, Laitumkhrah, Shillong
Meghalaya-793 003, INDIA
Email: rajulgupta01@yahoo.co.in

<sup>2</sup>Department of Pharmaceutical Chemistry
Anuradha College of Pharmacy, Chikhli, Dist. Buldana,
Maharashtra, INDIA.

#### Author's correspondence address:

Rajul Gupta, A-1/A-8, Shalimar Garden Extension-2, Ghaziabad-201005, U.P., India

Phone No.: +91-9266132514

Email: rajulgupta01@yahoo.co.in, rajulgupta001@gmail.com

#### ABSTRACT

Various substituted acetophenones on treatment with iodine and thiourea yielded 2-amino-4-(substituted-phenyl)-thiazole, which on further treatment with acetic anhydride generated N-(4-(substitutedphenyl)thiazol-2-yl)acetamide (1-5). All the synthesized compounds were characterized by their respective FTIR, <sup>1</sup>H NMR and mass data. Synthesized compounds (1, 2, 3, 4, 5) when subjected to investigation for their antimicrobial activities i.e. antibacterial and antifungal studies against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Asperigillus flavus and Asperigillus fumigatus by disk diffusion method, revealed that compound 2 deemed to be most potent with largest zone of inhibition.

KEYWORDS: Thiazole, Acetophenones, Antimicrobial, Substituted Aldehydes,

#### RESUMO

Tratamento de acetofenonas substituídas com iodo e tiouréia levou a formação de vários 2-amino tiazóis -4- (fenilsubstituidos). O tratamento destes com anihidrido acético gerou N-(4-fenilsubstituido)tiazol-2-il) acetamidas (1-5). Todos os compostos sintetizados foram caracterizados com técnicas de infravermelho com transformadas de Fourier, RMN de <sup>1</sup>H e espectrometria de massa. As propriedades frmacêuticas dos compostos 1,2,3,4 e 5 foram avaliadas com *Staphylococcus aureus*, *Eschericia coli*, *Pseudomonas aeruginosa*. *Cândida albicans*. *Aspergillus flavus e Aspergillus fumigatus*. O composto 2 foi o mais potente.

PALAVRAS CHAVE: Tiazol, Acetofenonas, Aldeídos Substituídos, Atividade Antimicrobiana.

VISIT OUR SITE: http://www.sbjchem.he.com.br





New Heterocycles Bearing Thiazole Moiety

62

#### INTRODUCTION

Thiazole derivatives have attracted a great deal of interest owing to their anticancer activity<sup>1-3</sup>, antibacterial activity<sup>4</sup>, antifungal activity<sup>4</sup>, anti-inflammatory activity<sup>4</sup>, antitubercular activity<sup>5</sup>, cardiotonic activity<sup>6</sup>, antidegenerative activity on cartilage<sup>7</sup> etc. Thiazoles are known to be allosteric enhancer of A<sub>1</sub> adenosine receptors<sup>8</sup> whereas other analogs are known to be inhibitors of protein phosphatases<sup>9</sup>. Heterocycle-bearing substrates are particularly desirable structures for screening and are prevalent in drugs that have reached the market place.

The development of simple and general synthetic routes for widely used organic compounds from readily available reagents is one of the major challenges in organic chemistry. Therefore to meet the facile results of these tough challenges thiazole nucleus was being considered. Among the wide variety of heterocycles that have been explored for developing pharmaceutically molecules, thiazole derivatives have played a vital role in the medicinal chemistry. There are large numbers of synthetic compounds with thiazole nucleus used for anticancer activities when properly substituted at 2-position. In view of these observations and in continuation to develop better and potent anticancer agents, some newer thiazole derivatives were synthesized.

#### MATERIALS AND METHODS

Melting points were taken in open capillaries and are uncorrected. IR spectrum of compounds in KBr pellets were recorded on a FTIR-8400S spectrophotometer (SHIMADZU). <sup>1</sup>HNMR spectra of the compounds were recorded on Bruker DRX 300 NMR spectrophotometer in DMSO-d<sub>6</sub> using TMS as internal standard. Mass spectra of the compounds were recorded on MSN-9629 mass spectrometer. Elemental analysis was carried out on Elemental Vario EL III Carlo Erba 1108. The purity of compounds was monitored by thin layer chromatography. Thin layer chromatographic analysis of the compounds were performed on silica gel G coated glass plates using Chloroform: Methanol: Pet.Ether (9:1:0.5) as mobile phase. The spots were visualized by exposure to iodine vapours.

#### General method for the synthesis of 2-amino-4-(substituted-phenyl)-thiazole

Various substituted acetophenones (0.01mol) were refluxed with iodine (0.01mol) and thiourea (0.02mol) for 9 hrs to get 2-amino-4-(substituted-phenyl)thiazole. The solid obtained was washed with diethyl ether, after which it was washed with sodium thiosulfate. Finally, it was washed with water and the residue was filtered, dried and recrystallized from distilled water.

#### General method for the synthesis of (1-5)

Then, 2-amino-4-(substituted-phenyl)thiazole (0.01mol) was refluxed with acetic anhydride (0.01mol) for 2hrs. This led to the formation of N-(4-(substituted-phenyl)thiazol-2-yl)acetamide (1-5). The final products were purified by recrystallization from ethanol. Physical data of compounds synthesized are summarized in Table-1.

| Compound | R                 | Molecular                                                       | Mol.   | Yield | m.p. (°C) |
|----------|-------------------|-----------------------------------------------------------------|--------|-------|-----------|
|          |                   | Formula                                                         | Wt.    | (%)   |           |
| and a    | H                 | $C_{11}H_{10}N_2OS$                                             | 218.27 | 61    | 98-99     |
| 2        | <i>p</i> -chloro  | C <sub>11</sub> H <sub>9</sub> ClN <sub>2</sub> OS              | 252.72 | 69    | 209-210   |
| 3        | <i>p</i> -bromo   | C <sub>11</sub> H <sub>9</sub> BrN <sub>2</sub> OS              | 297.17 | 65    | 202-203   |
| 4        | <i>p</i> -hydroxy | $C_{11}H_{10}N_2O_2S$                                           | 234.27 | 65    | 141-142   |
| 5        | o-hydroxy         | C <sub>11</sub> H <sub>10</sub> N <sub>2</sub> O <sub>2</sub> S | 234.27 | 70    | 115-116   |

Table-1. Physical data of compounds (1-5)

*N*-(4-phenylthiazol-2-yl)acetamide (1): UV  $\lambda_{\text{max}}$  (Methanol): 232 nm. FTIR (KBr): 3392.55 (N-H stretching), 2977.89 (aromatic C-H stretching), 2931.6 (C-H stretching of methyl), 1622.02 (C=O stretching), 1569.95 (C=N stretching), 1498.59 (aromatic C-C stretching), 690.47 cm<sup>-1</sup> (C-S stretching of thiazole). <sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 2.142 (s, 3H, CH<sub>3</sub>), 7.117 (s, 1H, =C-H of thiazole), 7.273-7.854 (m, 5H, Ar-H), 8.854 ppm (s, 1H, NH, D<sub>2</sub>O exchangeable). ESI-MS: m/z (%) 219 (8) [M+1]<sup>+</sup>, 218 (43) [M]<sup>+</sup>, 203 (40), 175 (100), 134 (43), 133 (23). Elemental Analysis: Calcd for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>OS: C, 60.53; H, 4.62; N, 12.83; S, 14.69. Found: C, 60.50; H, 4.63; N, 12.81; S, 14.68 %.

N-(4-(4-chlorophenyl)thiazol-2-yl)acetamide (2): UV  $\lambda_{max}$  (Methanol): 224 nm. FTIR (KBr): 3394.48 (N-H stretching), 2981.74 (aromatic C-H stretching), 2947.03 (C-H stretching of methyl), 1623.95 (C=O stretching), 1564.16 (C=N stretching), 1492.8 (aromatic C-C stretching), 746.4 (C-Cl stretching), 651.03 cm<sup>-1</sup> (C-S stretching of thiazole). <sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 2.466 (s, 3H, CH<sub>3</sub>), 6.545 (s, 1H, =C-H of thiazole), 7.116-7.625 (m, 4H, Ar-H), 9.154 ppm (s, 1H, NH, D<sub>2</sub>O exchangeable). ESI-MS: m/z (%) 254 (17) [M+2]<sup>+</sup>, 253 (6) [M+1]<sup>+</sup>, 252 (46) [M]<sup>+</sup>, 237 (32), 209 (100), 168 (42), 167 (22). Elemental Analysis: Calcd for C<sub>11</sub>H<sub>9</sub>ClN<sub>2</sub>OS: C, 52.28; H, 3.59; Cl, 14.03; N, 11.08; S, 12.69. Found: C, 52.27; H, 3.57; Cl, 14.02; N, 11.06; S, 12.71 %.

*N*-(4-(4-bromophenyl)thiazol-2-yl)acetamide (3): UV  $\lambda_{max}$  (Methanol): 225 nm. FTIR (KBr): 3417.63 (N-H stretching), 3029.33 (aromatic C-H stretching), 2993.32 (C-H stretching of methyl), 1672.17 (C=O stretching), 1598.88 (C=N stretching), 1488.94 (aromatic C-C stretching), 693.26 (C-S stretching of thiazole), 570.89 cm<sup>-1</sup> (C-Br stretching). HNMR (DMSO-d<sub>6</sub>) δ: 2.763 (s, 3H, CH<sub>3</sub>), 6.967 (s, 1H, =C-H of thiazole), 7.317-7.825 (m, 4H, Ar-H), 8.778 ppm (s, 1H, NH, D<sub>2</sub>O exchangeable). ESI-MS: m/z (%) 299 (43) [M+2]<sup>+</sup>, 298 (8) [M+1]<sup>+</sup>, 297 (42) [M]<sup>+</sup>, 282 (40), 254 (100), 213 (32), 212 (27). Elemental Analysis: Calcd for C<sub>11</sub>H<sub>9</sub>BrN<sub>2</sub>OS: C, 44.46; H, 3.05; Br, 26.89; N, 9.43; S, 10.79. Found: C, 44.45; H, 3.01; Br, 26.87; N, 9.46; S, 10.80 %.

N-(4-(4-hydroxyphenyl)thiazol-2-yl)acetamide (4): UV  $\lambda_{max}$  (Methanol): 242 nm. FTIR (KBr): 3558.42 (O-H stretching), 3406.05 (N-H stretching), 3048.29 (aromatic C-H stretching), 2923.88 (C-H stretching of methyl), 1631.67 (C=O stretching), 1554.52 (C=N

#### SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

#### New Heterocycles Bearing Thiazole Moiety

64

stretching), 1526.93 (aromatic C-C stretching), 675.04 cm<sup>-1</sup> (C-S stretching of thiazole). <sup>1</sup>HNMR (DMSO-d<sub>6</sub>)  $\delta$ : 2.228 (s, 3H, CH<sub>3</sub>), 4.955 (s, 1H, OH, D<sub>2</sub>O exchangeable), 6.369 (s, 1H, =C-H of thiazole), 7.296-7.658 (m, 4H, Ar-H), 8.564 ppm (s, 1H, NH, D<sub>2</sub>O exchangeable). ESI-MS: m/z (%) 235 (6) [M+1]<sup>+</sup>, 234 (28) [M]<sup>+</sup>, 219 (22), 191 (100), 150 (20), 149 (14). Elemental Analysis: Calcd for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>S: C, 56.39; H, 4.30; N, 11.96; S, 13.69. Found: C, 56.40; H, 4.33; N, 11.98; S, 13.65 %.

*N*-(4-(2-hydroxyphenyl)thiazol-2-yl)acetamide (5): UV  $\lambda_{max}$  (Methanol): 267 nm. FTIR (KBr): 3555.6 (O-H stretching), 3408.42 (N-H stretching), 3046.05 (aromatic C-H stretching), 2926.05 (C-H stretching of methyl), 1633.88 (C=O stretching), 1554.07 (C=N stretching), 1523.96 (aromatic C-C stretching), 1291.67 (C-O stretching), 673.68 cm<sup>-1</sup> (C-S stretching of thiazole). <sup>1</sup>HNMR (DMSO-d<sub>6</sub>) δ: 2.156 (s, 3H, CH<sub>3</sub>), 4.702 (s, 1H, OH, D<sub>2</sub>O exchangeable), 6.911 (s, 1H, =C-H of thiazole), 7.316-7.625 (m, 4H, Ar-H), 8.778 ppm (s, 1H, NH, D<sub>2</sub>O exchangeable). ESI-MS: m/z (%) 235 (6) [M+1]<sup>+</sup>, 234 (28) [M]<sup>+</sup>, 219 (22), 191 (100), 150 (20), 149 (14). Calcd for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>S: C, 56.39; H, 4.30; N, 11.96; S, 13.69. Found: C, 56.37; H, 4.33; N, 11.98; S, 13.67 %.

#### Antimicrobial activity

The synthesized compounds 1-5 were screened for antibacterial (S. aureus, E. coli, P. aeruginosa) and antifungal (C. albicans, A. flavus, A. fumigatus) activities by disk diffusion method at a concentration of 2 mg/mL using DMF as a solvent. The results were recorded in duplicate using Ciprofloxacin and Fluconazole as standards and are given in Table 2 & 3.

Table-2: Antibacterial Activity of compounds (1-5)

| Compounds     | Zo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne of Inhibition ( | mm)             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| Own Presence  | S. aureus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E. coli            | P. aeruginosa   |
| 1.            | 15.5 ± 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $17 \pm 0.33$      | $16 \pm 0.00$   |
| 2.            | 21.5 ± 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.5 ± 0.00        | 19.3 ± 0.00     |
| 3.            | 19.7 ± 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $20.3 \pm 0.33$    | $20.3 \pm 0.33$ |
| 4.            | 16.4 ± 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $15 \pm 0.00$      | $15.5 \pm 0.00$ |
| 5.            | $17.3 \pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 ± 0.33          | 17 ± 0.67       |
| Ciprofloxacin | $27 \pm 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $28 \pm 0.00$      | $27 \pm 0.00$   |
| DMF           | The Test of the Te | nu nu              | -               |

#### R. Gupta, N. K. Fuloria and S. Fuloria

Table 3. Antifungal Activity of Compounds (1-5)

| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z              | one of Inhibition (m | m)             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|----------------|
| rompounds -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C. albicans    | A. flavus            | A. fumigatus   |
| and the second s | $5.4 \pm 0.00$ | 5.0 ± 0.00           | $6.5 \pm 0.00$ |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3 ± 0.33    | $12.5 \pm 0.00$      | 11 ± 0.00      |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.7 ± 0.67    | 9.3 ± 0.33           | 8.3 ± 0.33     |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.2 ± 0.00     | $7.4 \pm 0.00$       | $8.0 \pm 0.00$ |
| 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3 ± 0.00     | $7.8 \pm 0.00$       | 8.7 ± 0.67     |
| Fluconazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $17 \pm 0.00$  | $16 \pm 0.00$        | 17 ± 0.00      |
| DMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dial           | 4,4                  | 609            |

#### RESULTS AND DISCUSSION

Various substituted acetophenones reacted with iodine and thiourea to get 2-Amino-4-(substituted-phenyl)-thiazole  $^{10}$ . Nextly, the 2-amino group of 2-Amino-4-(substituted-phenyl)-thiazole was acetylated with acetic anhydride, which led to the formation of N-(4-(substituted-phenyl)thiazol-2-yl)acetamide (1-5) in moderate to good yields (Scheme-1). The FTIR spectra of compounds 1-5 exhibited bands in the region of 3344.12-3417.23 cm<sup>-1</sup> due to N-H stretching and in the region 1622.02-1672.46 cm<sup>-1</sup> due to C=O stretching of amide. In  $^{1}$ H NMR spectra of compounds 1-5, one proton singlet appeared between  $\delta$  8.85-9.15 ppm was assigned to N-H proton which disappeared on  $D_2O$  exchange.

The structures of the synthesized compounds were assigned on the basis of elemental analysis, <sup>1</sup>H NMR, FTIR and mass spectral data and physical data. The synthesized compounds 1-5 were screened for antibacterial (S. aureus, E. coli, P. aeruginosa) and antifungal (C. albicans, A. flavus, A. fumigatus) activities by disk diffusion method at a concentration of 2 mg/mL using DMF as a solvent. This revealed that compound 2 deemed to be most potent with the largest zone of inhibition for both i.e. antibacterial activity and antifungal Activity.

#### New Heterocycles Bearing Thiazole Molety

#### SCHEME 1:

Where R = H, p-chloro, p-bromo, p-hydroxy and o-hydroxy- group

R. Gupta, N. K. Fuloria and S. Fuloria

67

#### Acknowledgement

The authors are thankful to IIT, Delhi and CDRI, Lucknow for providing facilities.

#### REFERENCES

- 1. L. B. Townsend, Y. Kumar, R. Green and S. Dean, J. Med. Chem., 36 (1993), 3849.
- 2. K. Tomita, Y. Tsuzuki, K. Shibamori and M. Tashirna, J. Med. Chem., 45 (2002), 5564.
- 3. M. J. Gorczynski, R. M. Leal, S. L. Mooberry and J. H. Bushweller, *Bioorg. Med. Chem.*, 12 (2004), 1029.
- 4. A. V. Adhikari, T. Karabasanagouda, R. Dhanwad and G. Parameshwarappa, *Indian J. Chem.*, 47B (2008), 144.
- 5. S. R. Pattan, A. A. Bukitagar, B. P. Kapadnis and S. G. Jadhav, *Indian J. Chem.*, 48B (2009), 1033.
- 6. T. Giridhar and R.B. Reddy, Indian J. Chem., 40 B (2001), 1279.
- 7. A. M. Panico, A. Geronikaki, R. Mgonzo and I. Doytchinova, *Bioorg. Med. Chem.*, 11 (2003), 2983.
- 8. A. Goblyos, S.N. Santiago, D. Pietra, T.M. Krieger, J.V.F.D. Kunzel, J. Brussee and A.P. Ijzerman, *Bioorg. Med. Chem.*, 13 (2005), 2079.
- 9. P. Wipf, D.C. Aslan, E.C. Southwick and J.S. Lazo, Bioorg. Med. Chem. Lett., 11 (2001), 313.
- 10. B. Sutariya, S. K. Raziya, S. Mohan and S. V. Sambasiva Rao, *Indian J. Chem.*, 46B (2007), 884.
- 11. S. Philip, S. Ritsa, S. Dominic and R. B. Michale, J. National cancer Inst., 82 (1990), 1107.

VISIT OUR SITE: http://www.sbjchem.he.com.br

# SYNTHESIS, CHARACTERIZATION AND COMPARATIVE SCREENING OF SOME NEWER 2-PHENYL INDOLE AND 5-CHLORO-2-PHENYL INDOLE DERIVATIVES

69

Vishal Chauhan\*<sup>1</sup>, Shivkanya Fuloria<sup>2</sup>, Neerjai K. Fuloria<sup>2</sup>, Syed R. Hashim<sup>3</sup>, Sokindra Kumar<sup>4</sup>

<sup>1</sup>Department of Pharmacy, CMJ University
Modrina Mansion, Laitumkhrah, Shillong
Meghalaya-793 003 INDIA
E-mail: vishal.chauhan@mail.com

<sup>2</sup>Anuradha College of Pharmacy, Chikhli, Dist. Buldhana,
Maharastra, INDIA

<sup>3</sup>Department of Pharmacy,
Institute of Foreign Trade and Management, Lodhipur Rajput,
Moradabad, INDIA

<sup>4</sup>Department of Pharmacy, R.V. Northland Institute
Greater Noida, INDIA

#### Author's correspondence address:

Vishal Chauhan H. No.-62, Vill-Tigipur, P.O. Bakhtawarpur Delhi, India-110036 Tel: +91999710861

E-mail: vishal.chauhan@mail.com; chauhanvishal00@gmail.com

#### **ABSTRACT**

Biologically active phenyl indole and chloro phenyl indole derivatives were efficiently synthesized. The reaction of 2-phenyl-1H-indole A and 5-chloro-2-phenyl-1H-indole B, with chloroacetylchloride yielded 2-chloro-1-(2-phenyl-1H-indol-1yl)ethanone 1 and 2-chloro-1-(5-chloro-2-phenyl-1H-indol-1-yl)ethanone 4 respectively. Compound 1 and 4 on Friedal Crafts cyclization in presence of aluminium chloride and nitrobenzene yielded indolo[2,1- $\alpha$ ]isoquinolin-6(5H)-one 2 and 10-chloroindolo [2,1- $\alpha$ ]isoquinolin-6(5H)-one 5 respectively, which upon hydrolysis afforded 2-(2-(1H-indol-2-yl)phenyl)acetic acid 3 and 2-(2-(5-chloro-1H-indol-2-yl) phenyl) acetic acid 6 respectively. The newly designed compounds were characterized on the basis of spectral studies and screened for anti-inflammatory and anti-microbial activities.

KEYWORDS: 2-phenyl-indole, 5-chloro-2-phenyl-indole, Friedal Crafts cyclization.

#### RESUMO

Derivados de fenil indol e clorofenil indol, biologicamente ativos, foram sintetizados de maneira eficiente. A reação de 2-fenil-1H-indol e 5-cloro-2-fenil-1H-indole com cloreto de cloroacetila seguida por ciclização Friedel Crafts levou aos compostos 2 e 5, respectivamente, os quais depois de hidrólise formaram 2-(2-(1H-indol-2-il)ácido fenilacético, 3, e 2-(2-(5-cloro-1H-indol-2-il)ácido fenilacético, 6. Os compostos foram caracterizados e a atividade antiinflamatória e antimicrobial foram avaliadas. PALAVRAS CHAVE: 2-Fenil indol, 5-Cloro-2-fenil indol, Ciclização Friedel Crafts



Synthesis and Screening of Some Newer Phenyl Indole Derivatives

#### INTRODUCTION

The statistical data provided that the global pharmaceutical market grew to 712 billion US dollars in 2007 at a rate of 10.7% and is expected to grow to 929 billion US dollars by 2012, which consists of 25.5 billion dollars of NSAIDS market. The global anti-infective market is currently valued at 66.5 billion US dollars with antibacterial agents accounting for over 50% of sales. Indole and phenyl acetic acid derivatives are known to have potent anti -inflammatory (1), anti-microbial (2) and analgesic (3) activities. As per prospects of NSAIDS in global pharmaceutical market and literary evidences for activities associated with indoles, an attempt was made to generate novel potent anti-inflammatory and anti-microbial drugs by converting a 2-phenyl indole moiety A and 5-chloro-2- phenyl indole moiety B into some novel 2-(2-(1Hindol-2-yl)phenyl)acetic acid 3 and 2-(2-(5-chloro-1H-indol-2-yl) phenyl) acetic acid 6. During this pathway of synthesis of 2-chloro-1-(2-phenyl-1H-indol-1yl)ethanone 1, indolo[2,1-α]isoquinolin-6(5H)-one 2-chloro-1-(5-chloro-2-phenyl-1H-indol-2, 1yl)ethanone 4 and 10-chloroindolo [2,1-α]isoquinolin-6(5H)-one 5 were obtained as key intermediates. All the newly designed compounds were further characterized and evaluated for anti-inflammatory and anti-microbial activities.

#### EXPERIMENTAL

Melting points of newly designed compounds were determined in open capillary tubes. IR spectra were recorded (in KBr) on Perkin Elmer and 1HNMR spectra on Bruker, SF 300 instruments. Purity of designed compounds was checked by TLC on aluminium sheets with silica gel 60 F254 (0.2 mm).

#### 2-chloro-1-(2-phenyl-1H-indol-1yl)ethanone (1)

To a solution of 2-phenyl-1H-indole A (0.01 mol) in methyl ethyl ketone, a solution of chloro acetyl chloride (in methyl ethyl ketone) was added dropwise on a magnetic stirrer. During the reaction to maintain the pH 8-9 a solution of sodium carbonate (in distilled water) was also added dropwise. The stirring was continued for further 75 min. From the resultant mixture the organic layer was separated and subjected for distillation under reduced pressure. The obtained crude product was recrystallized from methanol to yield compound 1.

IR (KBr, cm<sup>-1</sup>): 2916 (C-H of CH<sub>2</sub>), 3020 (C-H of aromatic ring), 1662 (C=O of amide)

<sup>1</sup>HNMR (CDCl3, ppm): 4.88 (2H; s; CH<sub>2</sub>), 6.53 (1H; s; H<sub>3</sub>), 7.05-7.29 (3H; m; H<sub>5</sub>, H<sub>6</sub> & H<sub>4</sub>'), 7.31-7.46 (5H; m; H<sub>7</sub>, H<sub>2</sub>, H<sub>3</sub>, H<sub>5</sub>', H<sub>6</sub>'), 7.6 (1H; m; H<sub>4</sub>) MS (m/z): 269 (M<sup>+</sup>), 233, 76, 51

#### indolo[2,1-a]isoquinolin-6(5H)-one (2)

To a solution of 2-chloro-1-(2-phenyl-1H-indol-1yl)ethanone 1 in nitrobenzene, 1g of powdered aluminium chloride was added in small portions with simultaneous stirring for 15 min. The reaction mixture was further stirred continuously for 1 hr. The resultant mixture was transferred onto crushed ice to form a semisolid mass, which was subjected to distillation to remove nitrobenzene to get a solid product. The obtained crude product was recrystallized from methanol to yield compound 2

70

### V. Chauhan, S. Fuloria, N.K. Fuloria, S.R. Hashim and S. Kumar

IR (KBr, cm-1): 2922 (C-H of CH<sub>2</sub>), 3045 (C-H of aromatic ring), 1668 (C=O of amide)

<sup>1</sup>HNMR (CDCl3, ppm): 3.66 (2H, s, CH<sub>2</sub>), 6.61 (1H; s; H<sub>3</sub>), 6.8-7.24 (5H; m; H<sub>5</sub>, H<sub>6</sub> H<sub>3</sub>', H<sub>4</sub>', & H<sub>5</sub>'), 7.29-7.67 (3H; m; H<sub>4</sub>, H<sub>5</sub>, H<sub>2</sub>') MS (m/z): 233 (M<sup>+</sup>), 76, 51

#### 2-(2-(1H-indol-2-vl)phenyl)acetic acid (3)

A mixture of indolo[2,1-\alpha]isoquinolin-6(5H)-one 2 in ethanol and sodium hydroxide solution was refluxed for 6 hrs. The resultant reaction mixture was filtered and to the filtrate HCl was added drop wise to yield a solid mass. The crude product so obtained was filtered and recrystallized from methanol to yield 2-(2-(1H-indol-2-yl)phenyl)acetic acid 3.

IR (KBr, cm-1): 3447 (O-H of COOH), 3021 (C-H of aromatic ring), 2930 (C-H of methylene), 1721 (C=O of COOH),

<sup>1</sup>HNMR (CDCl3, ppm): 8.52 (1H, s, N-H), 3.42 (2H, s, CH<sub>2</sub>), 6.51 (1H, s, H<sub>3</sub>), 6.82-7.19 (5H; m; H<sub>5</sub>, H<sub>6</sub>, H<sub>3</sub>', H<sub>4</sub>', H<sub>5</sub>'), 7.29-7.64 (3H, m; H<sub>2</sub>', H<sub>7</sub>, H<sub>4</sub>), 11.2 (1H, s, O-H) MS (m/z): 251 (M<sup>+</sup>), 234, 233, 224, 206, 91, 76, 51, 45

#### 2-chloro-1-(5-chloro-2-phenyl-1H-indol-1yl)ethanone (4)

To a solution of 5-chloro-2-phenyl-1H-indole A (0.01 mol) in methyl ethyl ketone, a solution of chloro acetyl chloride (in methyl ethyl ketone) was added dropwise on a magnetic stirrer. During the reaction to maintain the pH 8-9 a solution of sodium carbonate (in distilled water) was also added drop wise. The stirring was continued for further 75 min. From the resultant mixture the organic layer was separated and subjected for distillation under reduced pressure. The obtained crude product was recrystallized from methanol to yield compound 4.

IR (KBr, cm-1): 2919 (C-H of CH<sub>2</sub>), 3028 (C-H of aromatic ring), 1664 (C=O of amide)

<sup>1</sup>HNMR (CDCl3, ppm): 4.92 (2H; s; CH<sub>2</sub>), 6.59 (1H; s; H<sub>3</sub>), 7.14-7.34 (3H; m; H<sub>5</sub>, H<sub>6</sub> & H<sub>4</sub>'), 7.39-7.49 (5H; m; H<sub>7</sub>, H<sub>2</sub>', H<sub>3</sub>', H<sub>5</sub>', H<sub>6</sub>'), 7.54 (1H; d; *j*=2.7, H<sub>4</sub>) MS (m/z): 303 (M<sup>+</sup>), 267, 76, 51

#### 10-chloroindolo [2,1-a]isoquinolin-6(5H)-one (5)

To a solution of 2-chloro-1-(5-chloro-2-phenyl-1H-indol-1yl)ethanone 4 in nitrobenzene, 1g of powdered aluminium chloride was added in small portions with simultaneous stirring for 15 min. The reaction mixture was further stirred continuously for 1 hr. The resultant mixture was transferred onto crushed ice to form a semisolid mass, which was subjected to distillation to remove nitrobenzene to get a solid product. The obtained crude product was recrystallized from methanol to yield compound 5.

IR (KBr, cm-1): 2930 (C-H of CH<sub>2</sub>), 3049 (C-H of aromatic ring), 1674 (C=O of amide)

<sup>1</sup>HNMR (CDCl3, ppm): 3.72 (2H, s, CH<sub>2</sub>), 6.68 (1H; s; H<sub>3</sub>), 6.94-7.28 (5H; m; H<sub>5</sub>, H<sub>4</sub>', & H<sub>5</sub>'), 7.36-7.48 (2H; m; H<sub>5</sub>, H<sub>2</sub>'), 7.56 (1H; d; j=2.6, H<sub>4</sub>) MS (m/z): 267 (M<sup>+</sup>), 231, 91, 76, 51

#### 2-(2-(5-chloro-1H-indol-2-yl) phenyl) acetic acid (6)

A mixture of 10-chloroindolo [2,1-a]isoquinolin-6(5H)-one 5 in ethanol and sodium hydroxide solution was refluxed for 6 hrs. The resultant reaction mixture was filtered

71

#### SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

#### Synthesis and Screening of Some Newer Phenyl Indole Derivatives

72

and to the filtrate HCl was added drop wise to yield a solid mass. The crude product so obtained was filtered and recrystallized from methanol to yield 2-(2-(5-chloro-1H-indol-2-yl) phenyl) acetic acid 6.

IR (KBr, cm-1): 3458 (O-H of COOH), 3028 (C-H of aromatic ring), 2942 (C-H of methylene), 1716 (C=O of COOH)

<sup>1</sup>HNMR (CDCl3, ppm): 8.65 (1H, s, N-H), 3.52 (2H, s, CH<sub>2</sub>), 6.47 (1H, s, H<sub>3</sub>), 6.93-7.14 (4H; m; H<sub>6</sub>, H<sub>3</sub>', H<sub>4</sub>', H<sub>5</sub>') 7.32-7.38 (2H; m; H<sub>7</sub>, H<sub>2</sub>') 7.62 (1H; d; J = 2.8, H<sub>4</sub>), 11.35 (1H; s, O-H)

MS (m/z): 285 (M<sup>+</sup>), 268, 267, 258, 249, 240, 91, 76, 51, 45

#### Biological activity

The designed compounds 1, 2, 3, 4, 5, 6 were screened for anti-inflammatory activity by carageenan induced paw oedema method using distilled water as solvent. The results were recorded using indomethacin as standard drug and are given in table-II. The designed compounds 1-6 were also were screened for antibacterial and antifungal activity using disk diffusion method. The results were recorded using amoxicillin and egriseofulvin as standard drugs respectively and are given in Table-III and Table-IV.

#### RESULTS AND DISCUSSION

2-chloro-1-(2-phenyl-1H-indol-1yl)ethanone 1 and 2-chloro-1-(5-chloro-2-phenyl-1H-indol-1-yl)ethanone 4, prepared from 2-phenyl-1H-indole A and 5-chloro-2-phenyl-1H-indole B respectively. The obtained compounds 1 and 4 when cyclized with aluminium chloride yielded indolo[2,1-α]isoquinolin-6(5H)-one 2 and 10-chloroindolo [2,1-α]isoquinolin-6(5H)-one 5 respectively, which on hydrolysis lead to potent anti-inflammatory 2-(2-(1H-indol-2-yl)phenyl)acetic acid 3 and 2-(2-(1H-indol-2-yl)phenyl)acetic acid 6 respectively. The synthetic procedure for conversion of compound A to 3 and B to 6 is suggested in Scheme 1 and 2. Physical data of 1-6 are given in Table I. The assigned structure, molecular formulae and the anomeric configuration of the newly designed compounds 1-3 and 4-6 were further confirmed and supported by mass, 1H-NMR and IR spectral data, based on occurrence of molecular ion peak of the assigned structures, downfield shifting of protons and different stretching bands of the compounds. The resultant compounds 1, 2, 3, 4, 5 and 6 after characterizations were further screened for anti-inflammatory and anti-microbial activity (data given in Table-II, III and IV).

V. Chauhan, S. Fuloria, N.K. Fuloria, S.R. Hashim and S. Kumar

#### SYNTHETIC SCHEMES

73

#### Scheme1

#### Scheme 2

### SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

### Synthesis and Screening of Some Newer Phenyl Indole Derivatives

74

Table I. Physical data of compounds

| Compound<br>No. | Physical characteristics | Yield<br>(%) | Molecular formula                                  | Mol.<br>Wt. | M.P.<br>(°C) | R <sub>f</sub><br>Value |
|-----------------|--------------------------|--------------|----------------------------------------------------|-------------|--------------|-------------------------|
| 777             | White crystals           | 82           | C <sub>16</sub> H <sub>12</sub> CINO               | 269.73      | 205-<br>206  | 0.56                    |
| 2               | White crystals           | 76           | C <sub>16</sub> H <sub>11</sub> NO                 | 233.26      | 212-<br>213  | 0.42                    |
| 3               | White crystals           | 73           | C <sub>16</sub> H <sub>13</sub> NO <sub>2</sub>    | 251.28      | 228-<br>229  | 0.38                    |
| 4               | White crystals           | 74           | C <sub>16</sub> H <sub>11</sub> Cl <sub>2</sub> NO | 304.17      | 217-<br>218  | 0.52                    |
| 5               | White crystals           | 68           | C <sub>16</sub> H <sub>10</sub> CINO               | 267.71      | 223-<br>224  | 0.46                    |
| 6               | White crystals           | 64           | C <sub>16</sub> H <sub>12</sub> ClNO <sub>2</sub>  | 285.72      | 231-<br>232  | 0.34                    |

**TABLE II-** Anti-inflammatory activity of 2-phenyl indole and 5-chloro-2-phenyl indole derivatives on carrageenan-induced paw oedema in rats.

| Compd   | Paw volume in n | nl, mean ±SD(% in | hibition of paw ede | ma)            |
|---------|-----------------|-------------------|---------------------|----------------|
| 20mg/p  | After 1hr       | After 2hr         | After 3hr           | After 4hr      |
| 0       |                 |                   |                     |                |
| Control | 0.880±0.0179    | 0.886±0.0163      | 0.897±0.0151        | 0.885±0.0242   |
|         |                 |                   |                     |                |
| Indome  | 0.368±0.0197    | 0.326±0.0163      | 0.290±0.0219        | 0.265±0.0350   |
| thacin  | (58.18%)*       | (63.2%)*          | (67.67)*            | (70.05%)*      |
| 1       | 0.847±0.0242    | 0.833±0.0273      | 0.803±0.029         | 0.790±0.0452   |
|         | (3.75%)         | (5.98%)           | (10.47%)            | (10.73%)       |
| 2       | 0.840±0.0219    | 0.817±0.0151      | 0.787±0.0350        | 0.757±0.0234   |
|         | (4.45%)         | (7.78%)           | (12.26%)            | (14.46%)       |
| 3       | 0.583±0.0408    | 0.557±0.0197      | 0.527±0.0350        | 0.503±0.067    |
| _       | (33.75%)*       | (37.13%)*         | (41.24%)*           | (43.16%)*      |
| 4       | 0.817±0.0388    | 0.793±0.0273      | 0.773±0.0350        | 0.737±0.0151   |
| -       | (7.15%)         | (10.4%)           | (13.8%)             | (16.7%)        |
| 5       | 0.663±0.0344    | 0.647±0.0266      | 0.615±0.0253        | 0.595±0.0179   |
| ,       | (25.79%)*       | (27.2%)*          | (31.43%)*           | (32.95%)*      |
| 6       | 0.540±0.057**   | 0.515±0.0210**    | 0.395±0.0283**      | 0.325±0.0266** |
|         | (38.63%)        | (41.8%)           | (55.96%)            | (63.27%)       |

<sup>\*</sup>p<0.05 vs control, \*\*p<0.01 vs control (n=6)

### SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

#### V. Chauhan, S. Fuloria, N.K. Fuloria, S.R. Hashim and S. Kumar

Table: III - Antibacterial-sensitivity testing of 1-6.

| Compd.      | Antibacterial Activity  |                 |                 |  |  |  |  |  |
|-------------|-------------------------|-----------------|-----------------|--|--|--|--|--|
| No.         | Zone of Inhibition (mm) |                 |                 |  |  |  |  |  |
| - 1 - 1     | S. aureus               | E. coli         | P. aeruginosa   |  |  |  |  |  |
| 1           | 14.3 ± 0.33             | $18.3 \pm 0.33$ | $14.3 \pm 0.33$ |  |  |  |  |  |
| 2           | $20.7 \pm 0.67$         | $12 \pm 0.00$   | $16.7 \pm 0.33$ |  |  |  |  |  |
| 3           | 21.7 ± 0.67             | $16 \pm 0.00$   | $17.7 \pm 0.33$ |  |  |  |  |  |
| 4           | $16.7 \pm 0.67$         | $18 \pm 0.00$   | $14.7 \pm 0.67$ |  |  |  |  |  |
| 5           | $22.3 \pm 0.67$         | $17.7 \pm 0.33$ | $12 \pm 0.00$   |  |  |  |  |  |
| 6           | $23 \pm 0.00$           | $18.3 \pm 0.33$ | $20.7 \pm 0.33$ |  |  |  |  |  |
| Amoxicillin | $26 \pm 0.54$           | $25 \pm 0.68$   | $26 \pm 2.4$    |  |  |  |  |  |
| DMF         | 144*                    | STR.            | =               |  |  |  |  |  |

All the values are expressed as mean  $\pm$  SEM of triplicates

Table: IV- Antifungal-sensitivity testing of 1-6.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antifungal Activity  Zone of Inhibition (mm) |                 |                |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|----------------|--|--|--|--|--|
| Compd.<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                 |                |  |  |  |  |  |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C. albicans                                  | A. flavus       | A. fumigates   |  |  |  |  |  |
| - Transition of the state of th | $10.3 \pm 0.33$                              | $8 \pm 0.00$    | 9 ± 0.00       |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $9 \pm 0.00$                                 | 11 ± 0.00       | $10 \pm 0.00$  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $10\pm0.00$                                  | $11 \pm 0.00$   | 8 ± 0.00       |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 ± 0.00                                     | $11.7 \pm 0.67$ | $9 \pm 0.00$   |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $10.3 \pm 0.33$                              | $12 \pm 0.00$   | $9.3 \pm 0.33$ |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 ± 0.00                                    | $13 \pm 0.00$   | 9 ± 0.00       |  |  |  |  |  |
| Griseofulvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24± 0.00                                     | $25 \pm 0.00$   | $23 \pm 0.00$  |  |  |  |  |  |
| DMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                            | 40              | **             |  |  |  |  |  |

• All the values are expressed as mean  $\pm$  SEM of triplicates

75

Synthesis and Screening of Some Newer Phenyl Indole Derivatives

76

#### CONCLUSIONS

After screening the designed compounds for anti-inflammatory and anti-microbial (anti-bacterial and anti-fungal) studies it was found that each compound 1-3 and 4-6 possesses anti-inflammatory activity and anti-microbial activity to certain extent. Among the newly synthesized derivatives, compound 6 have shown significant (p<0.01) anti-inflammatory activity and was found to be almost equipotent to indomethacin when tested on rats. The compounds 3 and 5 have also shown significant (p<0.05) results. The other tested compounds 1, 2 and 4 have also shown anti-inflammatory activity to certain extent. Anti-microbial (anti-bacterial and anti-fungal) screening revealed that among the newly synthesized derivatives, compound 6 have shown the most significant anti-microbial activity when compared to standard drugs. Compound 5, 3 and 2 were found to have moderate activity while compound 1 and 4 were found to have mild activity among the tested compounds. After comparing the anti-inflammatory activity, anti-microbial activity and structural configuration of compounds 1-3 and 4-6, it was concluded that the incorporation of chlorine in derived compounds enhances their activity.

#### Acknowledgment

The authors are thankful to CDRI, Lucknow and IIT, Delhi for carrying out spectral studies. Thanks are also due to R. V. Northland Institute for timely help and support.

#### REFERENCES

- 1. Perissutti E., Fiorino F., Renner C., Severino B., Roviezzo F., Sautebin L., Rossi A., Cirino G., Santagada V. and Caliendo G. J. Med. Chem. 2006.Vol-49, no-26.pp 7774-7780.
- 2. Hu W., Guo Z., Yi X., Guo C., Chu F. and Cheng G. Bioorganic & Medicinal Chemistry.December 2003, Vol-11, Issue-24.pp 5539-5544.
- 3. Hwang K.J., Lee J.S., Kim T.B. and Raucher S. Bull. Korean Chem. Soc. 2006, Vol-27, no.6. pp 933-935.
- 4. Guru S., Yadav R., Srivastava S., Srivastava S.K., Srivastava S.D. J. Indian Chem. Soc., Vol. 83, December 2006, p.p. 1236-1241.
- 5. Walsh D.A., Moran W.H., Shamblee A.D., Welstead J.W., Nolan C.J., Sancillio F.L. and Graff G. J. Med. Chem. 1990. Vol-33, no-8. pp 2296-2304.
- 6. Mondal P., Jana S., Balaji A., Ramakrishna R., and Kanthal L.K. J Young Pharm. 2012 Jan-Mar; 4(1), p.p. 38-41.
- 7. Scholz M., Blobaum A.L, Marnett L.J. and Hawkins E.H. Bioorg Med Chem. 2011 May 15; 19(10), p.p. 3242-3248.
- 8. Singh R.V., Nagpal P. Bioinorg Chem Appl. 2005; 3(3-4), p.p. 255-270.